Introducing our Nature paper on a novel nano-immunotherapy scheme for atherosclerosis

We are excited to share with you our Nature in Biomedical Engineering article on the multi-parametric evaluation of a novel nano-immunotherapy scheme targeting atherosclerosis disease. The proposed methodology moderates CD40–CD40 ligand signalling in monocytes and macrophages of atherosclerotic plaques by blocking the interaction between CD40 and tumor necrosis factor receptor-associated factor 6 (TRAF6).

The accumulation of monocytes and macrophages in atherosclerosis has been associated with destabilization and rupture of plaque which can lead to acute cardiac events. Therefore, intervening in macrophage dynamics can be an efficacious therapeutic strategy in cardiovascular diseases. Indeed, our study demonstrated that a 1-week treatment regimen achieved significant anti-inflammatory effects in mice and non-human primates, due to the impaired migration capacity of monocytes.

We are very proud to have actively participated in this wonderful journey together with more than 30 researchers in 11 departments, across three countries. If you are interested in further details, please have a look at Dr Lameijer’s news article or read our original manuscript.

Thank you!

Advertisements

Parametric PET imaging is now a product!

Very proud that our early work on whole-body parametric PET imaging inspired important industry vectors to translate this technology into their clinical scanner systems. We first paved the way back in 2001 at Rahmim Lab and great collaborators joined us on the way. With the support of the industry (FlowMotion MultiParametric PET by Siemens) we are now optimistic that the clinical PET community will utilize dynamic whole-body PET acquisition and direct 4D reconstruction technology to benefit from the high quantification capabilities complementing the currently established static SUV PET imaging.

Dynamic and multi-parametric whole-body PET imaging has arrived in clinic and it is readily available NOW.

Thank you!

Finally, there is a vendor product (FlowMotion Multiparametric PET by Siemens) that enables dynamic whole-body PET including parametric imaging. This is very rewarding given that our group was the earliest to propose and work on this framework, including close collaboration with Siemens. This is clearly an enabling technology, and it remains to be seen whether […]  via Rahmim Lab

Our multi-parametric PET/MR and PET/CT imaging work featured in the summer 2017 edition of the #TMIInyc newsletter

The summer 2017 edition of the newsletter of the Translational and Molecular Imaging Institute (TMII) in Mount Sinai, New York, features our  latest research findings in multi-parametric PET molecular imaging utilizing state-of-the-art:

  1. 18F-NaF kinetics-driven bone tissue segmentation,
  2. dual-tracer PET/MR carotid plaque imaging and
  3. combined SUV/Patlak-4D WB PET/CT oncologic imaging

Download the newsletter in PDF format here.

TMIInewsletter_Summer2017_Page3

Page 3 of the TMII newsletter featuring our work in multi-parametric PET/MR and PET/CT

Our whole-body 4D parametric PET imaging research featured in 2016 highlights of the PMB journal

We are grateful to announce that our recent research publication in direct 4D whole-body PET parametric imaging has been featured in 2016 highlights of the Physics in Medicine and Biology (PMB) journal. Please check below the line-up of highlighted 2016 PMB articles awarded by the editorial team of the prestigious PMB journal in the field of PET imaging:

http://iopscience.iop.org/journal/0031-9155/page/Highlights_of_2016

This is indeed a great honor and we are indebted to the great interest you have recently demonstrated for our on-going progress in this new exciting molecular imaging field.

Our work aims at translating the quantitative virtues of multi-parametric molecular PET imaging, as initially had been shown in neuroimaging, to clinically feasible multi-bed PET scan protocols. The transition to whole-body dynamic and parametric PET imaging is critical as it may substantially enhance the diagnostic, prognostic and theranostic prospects of image assessments of various important molecular mechanisms  of oncologic and cardiovascular diseases.

figure1_gpatlak4dpaper

Direct 4D whole-body dynamic PET parametric imaging method

Thank you all for your active support and we would like to take this opportunity to openly share once again  our continuous commitment to advance the clinical value of molecular PET imaging as a valuable biomedical imaging tool to assess progress and therapy responses at the molecular level.

Our paper on direct 4D Whole-Body PET parametric imaging in the Top 10 PMB articles for 2016!

We are grateful to announce that our featured article on direct-4D whole-body PET parametric image reconstruction has been included in the Top-10 rankings for the most popular Physics in Medicine and Biology (PMB) articles of the year!

This is indeed a honorary distinction, as it stems directly from the broad interest of nuclear medicine community in our vision for clinically adoptable dynamic and parametric PET imaging.

Therefore, we would like to take this opportunity and thank you for your continuous feedback and support in our on-going efforts to enhance the quantitative virtues of PET molecular imaging by translating dynamic and parametric 4D PET imaging to the clinic.

In case you have missed the article, you can find it via the following top-10 PMB articles list for 2016, among other exciting scientific work in related fields.

Top-10 Most Popular Physics in Medicine and Biology Articles for 2016

Article on the clinical potential of whole body dynamic 4D PET imaging

We are very excited and motivated that our recently published work in dynamic whole-body 4D PET imaging for the clinical translation of advanced quantitative PET imaging has began to take notice in scientific community, as seen in the following online news article:

A clinical take on whole-body dynamic PET

The presented developments from Dr Karakatsanis and colleagues are the fruits of the productive collaboration between the research groups of Dr Rahmim at Johns Hopkins University and Dr Zaidi at University of Geneva.

The research work is further advanced currently at Icahn School of Medicine at Mount Sinai, New York, in close collaboration with the previous two groups.