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Abstract — Whole-body (WB) PET parametric imaging has
recently become clinically feasible with the introduction of multi-
bed dynamic acquisition protocols, benefiting from the latest
technologies in clinical PET scanners. Currently, Time-of-Flight
(TOF) capabilities of modern PET systems allow for more
accurate localization of the annihilation position along the line of
response (LOR). As a result, TOF can prevent propagation,
during image reconstruction, of various resolution degrading
factors and noise beyond their origin and across the image space,
thus providing i) an inherent correction or contrast recovery
mechanism and ii) an effective sensitivity gain relative to non-
TOF acquisitions. In addition, the incorporation of the PET
system’s point spread function (PSF) within the reconstruction
system matrix has resulted in i) enhanced contrast and ii)
considerably lower image roughness. Recently, we explored the
effect of TOF and PSF on WB indirect Patlak imaging. In this
work, we systematically investigate the additional benefit of TOF
and PSF on clinical studies when reconstructing WB Patlak
images directly from projection data. Therefore, we developed a
nested direct 4D Patlak WB reconstruction algorithm capable of
i) utilizing TOF information, ii) modeling PSF with an effective
space-invariant Gaussian resolution kernel and iii) supporting
both standard and generalized Patlak analysis. Our clinical
evaluation on a set of WB dynamic clinical studies, as acquired
with Siemens Biograph mCT TOF scanner, indicated a 15-30%
target-to-background (TBR) and contrast-to-noise ratio (CNR)
enhancement in all examined regions and for both Patlak
methods, when only TOF feature is enabled, with an additional 5-
10% improvement when combined with a 4mm FWHM Gaussian
PSF kernel. Thus, we have demonstrated the benefits of
integrating TOF and PSF features within a clinically adoptable
direct 4D WB generalized Patlak reconstruction scheme.

I. INTRODUCTION

YNAMIC PET imaging has recently been extended
Dfrom single bed to whole-body (WB) field-of-views
(FOVs) by exploiting novel multi-bed PET data
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acquisition protocols, optimized for fast clinical adoption and
supporting easily applicable and robust post-reconstruction,
also known as indirect, parameter estimation methods of
enhanced quantitative performance [1,2]. In addition, clinical
feasibility of WB parametric PET imaging has been further
improved nowadays, thanks to i) the overall higher sensitivity
of modern clinical PET scanners, currently allowing for faster
data acquisitions while retaining the same count statistics as
previously [3-5], and ii) the development of highly efficient
direct spatiotemporal (4-dimensional, 4D) parametric image
reconstruction algorithms, limiting noise propagation in the
final parametric images [6,7]. Moreover, a key point is iii) the
incorporation within 4D reconstruction of robust Patlak
graphical analysis which only requires tracking of
intermediate or late (>10min post injection) tracer kinetics,
thus alleviating the need for fast temporal WB sampling at
early times [1,8].

Nevertheless, WB parametric PET imaging could also
considerably benefit by two important state-of-the-art PET
technological developments: i) the Time-of-Flight (TOF) PET
acquisitions [9] and ii) Point Spread Function (PSF) image
reconstruction methods [10]. Although they have only recently
been introduced in commercial clinical PET scanners, TOF
and PSF features have already been routinely applied in the
clinic, delivering improved image quality with promising
future prospects [11-20].

In particular, the capability of acquiring TOF information on
modern clinical PET systems have already been associated
with a significant improvement in contrast recovery and image
resolution, especially for regions of low or moderate activity
uptake [3]. At the same time, the current precision of TOF
measurements, as determined by the current commercial PET
scanner performance metric of TOF timing resolution, is still
moderate with large margins of improvement to cover in
future. The current trend indicates significant TOF resolution
enhancements for the next generations of PET scanners, thus
feeding reasonable expectations for further TOF-related
benefits in the following years [21-24]. Dynamic PET imaging
and especially its WB extension, could particularly exploit
these benefits to significantly enhance image quality of short
dynamic PET frames [25-28], or alternatively improve time
sampling across multi-bed FOVs [1,29,30]. In addition, direct
4D parametric image reconstruction could also utilize TOF
information to further enhance contrast and limit noise as well
as kinetic-induced error propagation within and between
correlated parametric images [31].
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Furthermore, the employment of PSF resolution modeling
within tomographic image reconstruction, as currently
supported by clinical reconstruction software, has shown its
clinical potential in effectively reducing partial volume effect
(PVE) and enhancing contrast-to-noise ratio (CNR) scores
especially in small regions of higher or low uptake than their
surroundings [10,14,16-20]. PSF model-based reconstruction
schemes can outperform image-based post-filtering methods
by more accurately characterizing the resolution response of a
PET system during the image generation process rather than
afterwards [29,32]. Moreover, direct 4D parametric
reconstruction [6,42] could particularly benefit by integrating
PSF resolution modeling within its framework, as critical
regions for the image-based extraction of the input function,
such as the heart ventricles, and important target regions, such
as tumors, can be susceptible to PVE-induced bias which, in
turn, could be further propagated through 4D reconstruction
[31,33-41].

Recently, we explored the effect of TOF and PSF
technologies on WB indirect Patlak imaging, i.e. when voxel-
wise post-reconstruction Patlak analysis is conducted [29].
However, in a parallel study we observed the importance of
direct 4D WB Patlak imaging in reducing the high noise levels
and increasing the low CNR scores of indirect Patlak images
[6,42]. Therefore, in this work we systematically investigate
on patient studies the additional benefit of TOF and PSF
features, when integrated within 4D Patlak WB reconstruction.
Our aim is the optimization of the presented 4D WB PET
TOF+PSF reconstruction methods for routine clinical
application, especially when combined with synthesized SUV
imaging in the context of our recently proposed combined
SUV/Patlak imaging framework [43].

II. METHODS AND MATERIALS

A. Time-of-Flight PET Acquisition

The ability of modern fast PET detector systems to
estimate, within a certain precision, the detection times of the
two emitted gamma photons participating in each coincidence
event enables calculation of their time-of-flight between
annihilation and detection points and thus of their approximate
annihilation position along the line-of-response (LOR)
connecting the two detection points [9,44-49]. The TOF
resolution of the system determines the precision of the
estimated annihilation point and thus the minimum length of
TOF segments to reliably collimate the counts along each
LOR [50,51]. Unlike conventional non-TOF reconstruction
which considers a uniform counts distribution along the entire
LOR, advanced TOF reconstruction can utilize TOF-based
LOR partitioning to more accurately model the counts
distribution along the LOR and, as a result, enhance accuracy
and precision in the reconstructed images [28,52]. Therefore,
utilization of TOF information can effectively prevent during
image reconstruction the propagation of noise as well as of
various data inconsistencies, such as in attenuation,
normalization and scatter correction, beyond their origin and
across the image space, thus providing i) an inherent

correction or contrast recovery mechanism and ii) an effective
sensitivity gain relative to non-TOF acquisitions [9,29,53,54].

B. Point Spread Function Resolution Modeling

The integration of the PET system’s resolution response,
as characterized by its 3-dimensional (3D) point spread
function (PSF), within the forward- and back-projection
operators of a tomographic image reconstruction algorithm,
commonly referred to as PSF reconstruction or resolution
modeling [18,19,20,32-34,55], has recently been introduced in
the software of commercial clinical PET systems [4,10,56].
PSF resolution modeling, when incorporated into the system
matrix, can effectively trigger an iterative deconvolution of the
modeled finite PSF resolution response from the reconstructed
image and effectively improve the resulting images resolution
at the boundaries between two regions of different activity
levels while reducing image roughness in uniform regions
[32]. In this study, we have utilized so far a 3D space invariant
Gaussian PSF kernel which could be a simple, effective and
readily adopted resolution modeling tool for a range of clinical
PET scanners. However, PSF deconvolution also tends to
enhance inter-voxel correlations resulting in so-called Gibbs
artifacts which may affect reproducibility and quantification,
two critical features in parametric PET imaging [10,32,56-59].
Therefore, we utilized a PSF kernel of slightly smaller 3D
Gaussian FWHM size than the reported spatial resolution of
our PET scanner, motivated by recent studies which have
demonstrated reduction of Gibbs artifacts when partial PSF
resolution modeling is applied [60,61].

C. Direct 4D TOF+PSF WB Patlak Image Reconstruction

In this work, we investigate the additional benefit of TOF
and PSF features when reconstructing WB Patlak images
directly from projection data [6,7,62-65]. For that purpose we
utilized a direct 4D Patlak WB reconstruction algorithm,
supporting both standard (sPatlak) [8] and generalized Patlak
(gPatlak) analysis [66-69] and employing the concept of
optimization  transfer = for  accelerated convergence
[42,66,70,71]. Previously, the algorithm has been developed
and evaluated for non-TOF simulated data [42].

Currently, we added the capabilities of i) TOF information
utilization and ii) PSF resolution modeling within the
tomographic reconstruction system matrix and conducted a
systematic patient evaluation study. Furthermore, to avoid
trapping to local optima and ensure proper convergence for the
non-linear gPatlak algorithm, sPatlak reconstructed images
after 3 full OS-EM iterations (21 subsets) have been used to
initialize gPatlak reconstruction for subsequent iterations.

D. Design of clinical evaluation study

Our clinical evaluation was performed on a set of WB
dynamic PET FDG clinical studies acquired on state-of-the-art
Siemens Biograph mCT TOF PET/CT scanner with reported
TOF resolution of 580ps FWHM and a measured PSF of
4.1mm FWHM at the FOV center [4]. For partial PSF
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resolution recovery, we applied a slightly smaller Gaussian
kernel of 4.0mm FWHM within the 4D reconstruction [60,61].

The clinical studies have been acquired over a 60-78min
post injection window [43], which is similar with the standard
scan window of conventional standard-of-care static SUV WB
PET scans to facilitate its clinical feasibility and adoption.
Since the initial 1h post-injection data of the input function
cannot be acquired with such a protocol, the missing section of
the individual patients input functions have been derived by
properly scaling a previously calculated population-based
complete input function from a set of 11 patient studies
[72,73]. The scaling has been applied such that the late
measurements of each individual input function matched on
average the corresponding late section of the population-based
model. The modeled input function had been initially cross-
validated with the leave-one-out method [73].

The protocol has been streamlined for clinical feasibility
and, thus involved 4 WB unidirectional (cranio-caudal) passes,
each equal in time duration and consisting of 6 beds with
constant bed frames of 45sec, as previously optimized for non-
TOF case [1]. For comparative evaluation purposes, the non-
TOF raw clinical data have been produced from the
corresponding TOF data after summing up all 13 TOF bins of
the mCT raw projection data. In future, we are planning to
also evaluate shorter bed frames, i.e. of 30sec duration, to
allow for 6 WB passes within the same total scan time window
and, thus exploit the effective PET sensitivity gain of 580ps
TOF resolution compared to non-TOF acquisitions [4,10].
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Fig. 1: (First 2 rows): WB dynamic acquisition, involving m WB passes,
each consisting of equal bed frames of d sec. The recommended values for the
m and d parameters are provided for both non-TOF and TOF cases at the table
located at the bottom right of the figure. (Bottom row): Production of 4D
(s/g)Patlak TOF+PSF WB images using a previously proposed population-
based input function method, after validating it with a leave-one-out cross-
validation method on a set of eleven patient studies, all acquired at Johns
Hopkins PET center [73].

The single-frame, i.e. staticc WB SUV images for each
patient have been synthesized after adding all decay-corrected
raw projection data acquired frames at each bed position. The
resulting sinograms can then be reconstructed with proper
normalization to generate the equivalent SUV image.
Alternatively, the SUV image could be estimated with a more
straightforward post-reconstruction method. In particular, all
individual data frames of each bed could first be reconstructed
independently using the commercial scanner software,
followed by simple summation of the resulting dynamic image
frames at each bed position. The final WB image can then be
easily constructed from the individual bed position images.
Our preliminary clinical evaluation study on a pilot set of 5
patients has found negligible differences between the two
methods for the level of count statistics observed with our
proposed protocol on the TOF Biograph mCT clinical scanner
[1,4,73].

II. RESULTS AND DISCUSSION

Our quantitative evaluation was conducted on a set of liver
and thorax regions, as drawn from synthesized SUV clinical
PET images after adding all 4 WB passes at the projection
data level and then reconstructing (Fig. 2) [43]. The count
statistics are equivalent to 3min per bed (addition of 4 frames,
each of 45sec) and thus may be considered sufficient for a
satisfactory accuracy in the ROIs delineation, as illustrated in
Fig. 2.

Fig. 2. Regions in the liver and thorax evaluated in this study, as drawn from
synthesized SUV images after adding all 4 WB passes data acquired between
60-78min [7].

The WB parametric images of tracer influx rate constant K ,
also known as Patlak slope, in Fig. 3 indicate a 15-30% target-
to-background (TBR) and CNR enhancement in all evaluated
regions and for both Patlak graphical analysis methods,
compared to non-TOF and non-PSF case, when only TOF
feature is enabled. An additional 5-10% improvement was
observed, relative to the same class of data, when TOF feature
was combined with PSF reconstruction (TOF+PSF). It should
also be noted that PSF feature alone did reduce noise for the
same attained contrast levels, regardless of the availability of
TOF information.

Our results reproduce the same performance trend as
previously observed on static PET data [12,14,74], as well as
post-reconstruction Patlak K; analysis [29]. Moreover,
TOF+PSF Patlak K; images consistently demonstrated higher
lesion TBR contrast and CNR scores than that of TOF+PSF
SUV images, thus confirming previous findings for non-TOF
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+ non-PSF comparisons between K; and SUV PET images
[1,2,65]. This observation suggests the additional benefit of
enriching established SUV imaging with complementary
parametric  information through combined SUV/Patlak
clinically adoptable imaging protocols [43].
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Fig. 3. K; sPatlak (al-a3) and gPatlak (b1-b3) patient WB images
employing various combinations of TOF and PSF features. TBR and CNR
plots for target K; ROIs in liver (cl, c2) and thorax (c3, c4). Both 4D
(s/g)Patlak methods (sPK & gPK) are evaluated. The direct 4D gPatlak (gPK)
reconstruction algorithm has been initialized with the respective sPatlak (sPK)
image estimates of the 3 OS-EM iteration, thus the results are identical for
the first 3 OS-EM iterations.

Furthermore, in Fig. 4 TOF+PSF direct 4D Patlak
reconstruction achieved higher TBR and CNR scores in the
evaluated lesion ROIs than TOF + post-reconstruction
smoothing for the same space-invariant FWHM Gaussian
kernel size. This observation suggests that PSF reconstruction
alone does improve the trade-off between resolution and noise
in the Patlak K; images and therefore its preference over
simple post-smoothing can be justified for direct 4D WB
Patlak K; imaging, in addition to previous similar findings for
indirect K; [29] as well as static SUV PET images [16-20].

Finally, the generalized 4D Patlak (gPK) TBR and CNR
curves were systematically converging to a relatively higher
score than respective standard 4D Patlak (sPK) curves in both
fig. 3 and 4, thus reproducing the same performance trend

with our previous findings for indirect application of the
respective WB Patlak analysis methods [64,65]. We attribute
the superior TBR and CNR performance of gPatlak to its
ability to better account for potential tracer uptake reversibility
with respect to standard linear Patlak model [8].
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Fig. 4. Transaxial (al-a3) and coronal (bl-b3) K; images for TOF w. & w/o
PSF modeling as well as TOF+post-smoothing. Respective TBR (c1) and
CNR (c2) plots for a target K; ROI in thorax. Both 4D (s/g)Patlak methods
are evaluated. The direct 4D gPatlak (gPK) reconstruction algorithm has been
initialized with the respective sPatlak (sPK) image estimates of the 3™ OS-EM
iteration, thus the results are identical for the first 3 OS-EM iterations.

We should note here that gPatlak 4D reconstruction was
initialized for the first 3 OS-EM iterations with linear sPatlak
reconstruction estimates to ensure global optimal EM
convergence by avoiding the possibility of trapping to any
local optima, due to the non-linearity of the gPatlak objective
function [42]. Since our proposed SUV/Patlak combined
imaging protocol is restricted to late time-windows for clinical
adoptability, the potential bias in the Patlak K; estimates, due
to lack of early tracer kinetics data [75], may be sufficiently
compensated through a robust 4D reconstruction of gPatlak
analysis, further supported by TOF+PSF features utilization.

IV. CONCLUSIONS

Our patient results consistently demonstrated the additional
clinical benefits in TBR and CNR performance when direct
4D WB (s/g)Patlak reconstruction utilizes the current TOF and
PSF reconstruction capabilities of modern commercial
PET/CT scanners to further enhance lesion detectability and
quantification imaging tasks. In addition, we have shown the
clinical feasibility of direct 4D WB Patlak imaging as well as
it clinical potential when combined, as a complementary
feature, with routinely established SUV imaging within a
unified SUV/Patlak WB imaging framework. Finally, we note
the superior TBR and CNR performance of gPatlak analysis
on clinical data, when supported by efficient 4D
reconstruction as well as TOF+PSF features to limit noise and
error propagation in the final image estimates.
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