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Abstract

Whole-body (WB) dynamic PET has recently demonstrated its potential
in translating the quantitative benefits of parametric imaging to the clinic.
Post-reconstruction standard Patlak (sPatlak) WB graphical analysis utilizes
multi-bed multi-pass PET acquisition to produce quantitative WB images of
the tracer influx rate K; as a complimentary metric to the semi-quantitative
standardized uptake value (SUV). The resulting K; images may suffer
from high noise due to the need for short acquisition frames. Meanwhile,
a generalized Patlak (gPatlak) WB post-reconstruction method had been
suggested to limit Kj bias of sPatlak analysis at regions with non-negligible
BE_-FDG uptake reversibility; however, gPatlak analysis is non-linear and
thus can further amplify noise. In the present study, we implemented, within
the open-source software for tomographic image reconstruction platform,
a clinically adoptable 4D WB reconstruction framework enabling efficient
estimation of sPatlak and gPatlak images directly from dynamic multi-bed
PET raw data with substantial noise reduction. Furthermore, we employed
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the optimization transfer methodology to accelerate 4D expectation—
maximization (EM) convergence by nesting the fast image-based estimation
of Patlak parameters within each iteration cycle of the slower projection-
based estimation of dynamic PET images. The novel gPatlak 4D method was
initialized from an optimized set of sPatlak ML-EM iterations to facilitate EM
convergence. Initially, realistic simulations were conducted utilizing published
F-FDG kinetic parameters coupled with the XCAT phantom. Quantitative
analyses illustrated enhanced K; target-to-background ratio (TBR) and
especially contrast-to-noise ratio (CNR) performance for the 4D versus the
indirect methods and static SUV. Furthermore, considerable convergence
acceleration was observed for the nested algorithms involving 10-20 sub-
iterations. Moreover, systematic reduction in K; % bias and improved TBR
were observed for gPatlak versus sPatlak. Finally, validation on clinical WB
dynamic data demonstrated the clinical feasibility and superior K; CNR
performance for the proposed 4D framework compared to indirect Patlak
and SUV imaging.

Keywords: PET, parametric, Patlak, imaging, whole-body, quantification,
4D reconstruction

(Some figures may appear in colour only in the online journal)

1. Introduction

Molecular imaging involves in vivo visualization, characterization and measurement of bio-
logical processes at molecular and cellular levels, often consisting of 2- or 3-dimensional
(2D or 3D) imaging as well as quantification over time (Mankoff 2007). Positron emission
tomography (PET) is nowadays considered a primary molecular imaging modality capable
of quantitatively measuring and localizing radiolabelled biomarkers as they circulate via
the blood stream across living tissues (Phelps 2000, Aboagye et al 2001, Gambhir 2002). In
particular, static PET employs the established surrogate metric of standardized uptake value
(SUV) to evaluate a temporal instantiation of the dynamic in vivo tracer distribution within a
single time frame (Wahl and Buchanan 2002).

Dynamic PET, on the other hand, allows for sampling of the time course of the spatial
distribution of tracers in the blood (input function) and tissues to enable 4-dimensional (4D)
in vivo imaging for a range of molecular biomarkers (Schmidt and Turkheimer 2002, Carson
2005, Bentourkia and Zaidi 2007, Miiller-Schauenburg and Reimold 2008). Subsequently, the
acquired 4D data may be fitted to a kinetic model to enable quantification of physiological
parameters of interest at the individual voxel level, known as parametric PET imaging (Messa
et al 1992, Nitzsche et al 1993, Petit-Taboue ef al 1996, Gunn et al 1997). Unlike static SUV
PET imaging, which only provides a temporal ‘snapshot’ of the tracer dynamic distribution,
parametric PET imaging enables a more objective characterization of the underlying physiol-
ogy. Thus, the clinical translation of whole-body (WB) dynamic PET imaging may facilitate
significant quantitative enhancements in diagnostic, prognostic and theranostic assessments
for various oncology, cardiology and neurology diseases.

Nowadays, a wide range of clinical PET imaging protocols involve multi-bed or WB
acquisitions to enable assessment of disseminated disease from a single scan session, e.g.
assessment of metastatic burden (Wahl and Buchanan 2002). Single-pass or static PET scans
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can readily support multi-bed field-of-views (FOVs) with sufficient scan time allocated per
bed (Kubota et al 1985, Thie 2004, Boellaard e al 2015). On the contrary, extension of
current dynamic PET protocols to multi-bed FOVs is more challenging, as it involves mul-
tiple WB passes within the same time, resulting in very short scan time frames per bed.
Nevertheless, dynamic PET has been steadily garnering clinical interest in oncology for the
quantitative assessment of the progress and response to treatment of an increasing range
of tumor types (Gupta et al 1998, Prytz et al 2006, Castell and Cook 2008, Kotasidis et al
2014). With the advent of commercial PET scanners with larger axial FOVs, improved
electronics, time-of-flight (TOF) and resolution modeling capabilities, studies of higher
statistical quality may now be possible in shorter time sessions, paving the way for clini-
cal WB parametric PET imaging (Panin ez al 2006, Karp et al 2008, Rahmim et al 2013,
Karakatsanis et al 2014b).

Recently, we proposed a clinically adoptable dynamic WB '8F-FDG PET data acquisi-
tion framework involving a streamlined 6-pass WB protocol (Karakatsanis et al 2013a,
2013c). In that framework, the dynamic WB PET images were first reconstructed, using
a regular 3D maximum-likelihood expectation—maximization (ML-EM) algorithm
(Dempster et al 1977, Shepp and Vardi 1982). Then, the standard Patlak (sPatlak) lin-
ear graphical analysis method (Patlak er al 1983) was employed on the voxel level to
robustly estimate images of the tracer influx rate constant K; and the blood distribution
volume V. As sPatlak considers a linear relationship between the estimated parameters
and the measured data, the ordinary least squares (OLS) regression method was applied
to robustly fit the images to the model.

Although the sPatlak method is robust and therefore attractive for clinical usage, it
does not account for uptake reversibility and therefore it may lead to biased K; estimates
(Hoh et al 2011, Sayre et al 2011). In fact a number of studies have reported mild revers-
ibility for normal tissues (Hawkins ef al 1992, Okazumi et al 1992, Fischman and Alpert
1993, Choi et al 1994, Nelson et al 1996, Graham et al 2000, Huang 2000, Zhuang et al
2001, Tozzo et al 2003, Lin et al 2005, Prytz et al 2006) as well as some oncologic malig-
nancy types, such as hepatocellular carcinoma (HCC) tumors (Messa et al 1992, Torizuka
et al 1995). As such, we recently proposed the non-linear generalized Patlak (gPatlak) WB
imaging method which utilizes the additional net efflux rate constant ko to account for
mild uptake reversibility and thus reduce the observed sPatlak K; bias in multiple bed posi-
tions (Karakatsanis et al 2015a).

Both above-mentioned techniques are conducted at the image level as a separate post-
reconstruction step and, therefore, are characterized as indirect parametric imaging methods.
Since each dynamic frame is reconstructed separately from the rest, the counts contributing
to each dynamic image are limited to the respective time frame thus enhancing noise levels
in the estimates. Alternatively, parametric PET images can be reconstructed directly from the
complete set of dynamic raw PET measurements as initially introduced by Matthews et al
(1997). Interested readers may refer to informative literature reviews on the topic (Tsoumpas
et al 2008a, 2008b, Rahmim et al 2009, Wang and Qi 2013, Kotasidis et al 2014, Reader
and Verhaeghe 2014). In particular, the sPatlak model has been previously incorporated
within the ML-EM framework to enable direct estimation of K; and V macro-parameters from
dynamic single-bed PET raw data (Tsoumpas et al 2008a, Wang and Qi 2009, Tang et al
2010, Verhaeghe and Reader 2010). Unlike post-reconstruction Patlak analysis, 4D Patlak
algorithms allow for direct ML-EM estimation from the complete 4D dataset, performing
comprehensive counts utilization. In addition, the statistical noise in the raw data follows the
well-known Poisson distribution, which can be accurately modeled within 4D reconstruction
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algorithms, while the indirect methods commonly oversimplify the complex noise distribu-
tion in the reconstructed PET images (Barrett ef al 1994, Qi 2003, Rahmim and Tang 2013,
Reader and Verhaeghe 2014). Therefore, 4D Patlak reconstruction is expected to yield reduced
noise levels than indirect methods, with the difference becoming more apparent for low count
statistics.

Due to a higher model complexity in 4D reconstruction, a larger number of iterations are
needed for the convergence of the image estimates (Wu 1983, Kamasak er al 2005, Rahmim
et al 2009). Moreover, the convergence rate may be further decelerated due to inherent
correlations between the Patlak temporal basis functions (Wang et al 2008, Tsoumpas et al
2008b, Rahmim et al 2009, Tang et al 2010, Wang and Qi 2010, Karakatsanis ef al 2013b).
As a result, the slower tomographic update is interleaved with the faster Patlak update at
each iterative step. Alternatively, the principle of optimization transfer (Carson and Lange
1985, Lange et al 2000) can be employed to define surrogate objective functions, which in
turn allow for nesting of multiple sub-iterations of the fast image-based ML-EM update pro-
cess within each global iteration of the slower projection-based ML-EM update (Wang and
Qi 2010, 2012, 2013, Karakatsanis and Rahmim 2014a). The same principle has been also
employed for the integration of resolution (Angelis et al 2013) and motion (Karakatsanis
et al 2014d) models within PET image reconstruction. As the image-based Patlak ML-EM
sub-iterations are considerably faster than the external tomographic ML-EM global itera-
tions, multiple Patlak updates can be accommodated within each global iteration, thus facil-
itating convergence at a negligible computational cost per global iteration.

In the meantime, Zhu et al (2012, 2014) developed a non-nested 4D sPatlak algorithm for
direct reconstruction from list-mode data across multiple beds. Their approach was based on
a simplified 2-pass WB dynamic protocol (dual-time Patlak), which may be the minimum
necessary number of passes to estimate the two sPatlak parameters (slope and intercept) but
not for non-linear gPatlak regression involving 3 parameters. Furthermore, the choice of two
WB passes does not offer any redundancy if the initial scan window is not found to be optimal
for the evaluated tracer kinetics (Karakatsanis et al 2014c) or if the patient chooses to sud-
denly stop the exam before the two passes are completed.

Here we propose a multi-bed extension of the previous nested 4D sPatlak algorithms
to directly and efficiently reconstruct sPatlak WB images from dynamic WB PET raw
data at an accelerated convergence rate. In addition, we present a novel non-linear 4D
nested gPatlak reconstruction algorithm for quantitative WB Kj imaging either in single- or
multi-bed FOVs, including regions where linear sPatlak yields biased Kj estimates, due to
non-negligible uptake reversibility. Both methods are based on our previously optimized
6-pass WB scan protocol corresponding to 0—45 min post injection (p.i.) scan window.
By acquiring six WB passes, the necessary temporal data redundancy is attained to facili-
tate (a) kinetic-driven optimization of the acquisition time window, and (b) robust estima-
tion of Patlak parametric images, especially for gPatlak non-linear parameters. Finally,
we introduce a practical sPatlak-based initialization scheme for the gPatlak 4D algorithm
to potentially overcome convergence problems to local optima, due to high noise in the
data (Wu 1983). All proposed and reference algorithms have been implemented and valid-
ated on the open-source Software for tomographic image reconstruction (STIR) platform
(Thielemans et al 2012) by building upon existing non-nested sPatlak reconstruction
libraries (Tsoumpas et al 2008a) and including both simulated and clinical studies. As
we target clinical adoptability, we laid emphasis on efficiency, robustness and application
scope for the proposed methods.
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Figure 1. Flow chart illustrating the sequence of all dynamic bed frames, as acquired
with the step-and-shoot mode during the 2nd phase of the suggested WB dynamic PET
protocol. In the example, 6 unidirectional (cranio-caudal) WB passes are acquired, each
comprised of 7 beds of equal scan duration. Later the parametric K; image at each
column, i.e. bed position, is directly estimated via 4D sPatlak and gPatlak algorithms
from the image-derived input function and the respective dynamic projection PET data.

2. Materials and methods

2.1. Whole-body dynamic PET acquisition protocol

The proposed WB dynamic PET data acquisition protocol consists of an initial dynamic PET
scan at the cardiac bed position, immediately following tracer administration (first phase),
namely 0—6 min p.i., to measure the rapidly changing early section of the tracer concentration
in the blood plasma (input function). Then, a dynamic series of 6 WB passes follows (second
phase), for 8—45min p.i. (figure 1), to sample the later part of the tissue time activity curves
(TACs) at every voxel across the WB FOV. The protocol has been streamlined for straight-
forward clinical adoption: each dynamic WB frame is scanned along the same axial direction
(cranio-caudal or vice versa) and consists of equal number of beds of equal duration resulting
in uniform temporal sampling rates for all bed positions (Karakatsanis e al 2013a).
Initially, the PET 4D raw data from both protocol phases are independently reconstructed
and the input function is extracted from regions-of-interest (ROIs) placed over the heart left-
ventricle (LV) in the resulting PET dynamic images. The ROIs are drawn such that partial vol-
ume effects are minimized (Karakatsanis et al 2013a). Subsequently, the image-derived input
function is utilized to produce WB parametric K; images with (a) our previously validated
indirect Patlak analysis and (b) the newly proposed direct 4D Patlak reconstruction methods.
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Figure 2. Standard 2-tissue compartment '8F-FDG kinetic models (a) without and (b)
with uptake reversibility constant rate k4. The Cp, C. and C,, compartments denote
the activity concentration in blood plasma and in tissue exchangeable and metabolized
states, respectively (Gunn ez al 2001).

2.2. Patlak graphical analysis methods

2.2.1. Linear standard Patlak (sPatlak) graphical analysis. In multi-bed dynamic PET acqui-
sitions, the linear sPatlak graphical analysis method (Patlak et a/ 1983) utilizes the dynamic
PET data from each bed position and the input function to estimate the kinetic macro-
parameters of tracer influx rate constant Kj, in units of ml of blood per minute per gram of tissue
(ml (min x g)~ '), and total distribution volume V, in units of ml of blood per gram of tissue
(ml g~ 1), at each voxel (Karakatsanis et al 2013a):

ca) . j(; Cp(thdr!
R D)

tn
Clt) =K [ ot + VCo(t) = Ki® Colt)+ VC(t), 1> 1% n=1...N M
0

+V=

where ® denotes the convolution operation over the time variable ¢ and C(t,) is the measured
tissue TAC at the mid-frame time points #, of the N dynamic PET frames, corresponding to a
particular bed and voxel. Moreover, Cp(#,) is the input function at the #, time points and #* is
the p.i. time after which relative kinetic equilibrium between the blood and the tissue tracer
concentration is attained. The sPatlak analysis assumes an irreversible 2-tissue-compartment
tracer kinetic model, as illustrated in figure 2(a).

Patlak and Blasberg (1985) showed that the macro-parameter K; can be related to the kinetic
micro-parameters K; (ml (min x g)~ '), K, (min~!), K3 (min~') and K4 (min~") as follows:

kiks

K = 2
"tk @

2.2.2. Non-linear generalized Patlak (gPatlak) graphical analysis. Standard linear Patlak
analysis directly estimates K; and V macro-parameters by assuming a 2-tissue-compartment
kinetic model with an irreversible compartment, a commonly invoked model for organs and
tumors exhibiting '*F-FDG uptake in PET human studies (Gunn et al 2001). However a con-
siderable number of studies suggest uptake reversibility for a range of tracers, as presented
previously (Holden et al 1997, Lodge et al 1999, Karakatsanis ef al 2015a). Since the sPatlak
model assumes irreversible uptake, it may underestimate Kj to compensate for lack of revers-
ibility modeling (Messa et al 1992, Hoh et al 2011, Sayre et al 2011).

Therefore, later Patlak and Blasberg (1985) introduced a generalized graphical analysis
method to account for mildly reversible uptake kinetics. A ko kinetic parameter was intro-
duced to describe the net rate constant for absorbed or metabolized tracer loss to the blood
plasma. By assuming a reversible 2-tissue compartment model with ko << K, it follows
(Karakatsanis et al 2015a):
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In
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The net efflux rate constant ks (min~!) is related to the kinetic micro-parameters as follows:

koky
ko + ks

Despite the presence of a non-linear term in equation (3), gPatlak analysis is characterized
by a significantly lower degree of complexity and, thus higher robustness, than the standard
2-tissue compartmental kinetic modeling methods. Nevertheless, gPatlak is less robust to
noise, but enhances K; quantification in voxels with uptake reversibility, compared to sPatlak
analysis (Karakatsanis ef al 2015a).

kloss =

“)

2.3. Direct 4D WB Patlak imaging

Previously, we proposed a set of indirect WB PET parametric imaging tools utilizing either
sPatlak or gPatlak graphical analysis (Karakatsanis et al 2013a, 2015a), here denoted, in
general, as (s/g)Patlak methods. The standard OLS and the basis function method (BFM)
(Gunn et al 1997) were then applied on the reconstructed dynamic PET images to estimate
the sPatlak and gPatlak parameters respectively. However, the main scope of the current study
is the design and validation of clinically adoptable direct 4D (s/g)Patlak ML-EM WB recon-
struction methods for more efficient utilization of the 4D data, at each bed position, when
estimating kinetic macro-parameters.

2.3.1. Nested direct 4D WB sPatlak reconstruction. Let us first define the following:

oy = [yf']lez nth dynamic frame of a PET sinogram or projection data vector comprised
of a total of I detector pair or line-of-response (LOR) bins,

o Y=[y ...y 1": column vector of a set of N dynamic frames of measured PET sinograms,

o X" = [x;f]jzlz nth dynamic frame of a PET image vector comprised of a total of J voxels,

® X =[x'...xN]": column vector of a set of N dynamic frames of reconstructed PET
images,

e K=K lj ];: |- parametric image vector of the Patlak slope or tracer influx rate constant Kj,

oy — [Vj]j: ,; parametric image vector of the Patlak intercept or blood distribution

volume V,
e M, = [K;V]": ensemble standard Patlak parametric image vector
e Cp(n) = Cp(t,): measured blood plasma activity concentration at mid-frame time f,,

e Sp(n) = j; " Cp(t')dt": integral of Cp(¢') along time variable ¢/
o P —| pij]-l J Lt spatial system response matrix with p; denoting the probability an anni-
i=1,j=

hilation event having occurred at jth image voxel to be recorded at ith detector pair or line
or response (LOR) of the sinogram, thus y" = Px",
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Se(1)  Ge(1)

_ N2 _
® B=bomd, 5y jmr = [ }: standard Patlak model matrix and

Se(N) Go(N)

Sp(H)P Ge(1)P
°ep_ : : — p @ B, spatio-temporal system response matrix derived by taking
LP(N P Co(N )P]
the Kronecker product (& ) of P and B; model response matrices.
According to standard Patlak graphical analysis the expectations of dynamic sinograms
Y = ...y N1 and respective PET i 1mages [x N1 can be directly related to the
expected ensemble parametric image MY = [K ; V] of tracer influx rate constant K and blood

distribution volume V according to the following linear kinetic model equations:
X =BM, Y =PM, = (P®B)M, ®
or, equivalently:

(K, V) = KSp(n) + VCo(n),5" (K, V) = P¥"(K, V) = P(KSp(n) + VCp(n))

(6)
Then the two 4D maximum likelihood expectation—maximization (ML-EM) update
equation follows:

n

B = — o ZSP(”)P ! % (Ta)
n a
PT IZS (I’l) n=1 Yy old> Yold) |
n=1
T = ZCP(”)P ' % (7b)
PT 12 Cp(n) n=1 y old> Yold) |
n=1
or, equivalently:
— M, 4 —
M,new = —:I(w)ldPT _/{ (7¢)
P1 PM; o4
By letting m’ [m/ k]i:] =[K l’ v/ ]T as the standard Patlak parameter vector at voxel j, we

have:

Jjonew _
Mk ZBsnkZP Z; ”"Z ZBMkmjold (7d)

The nested 4D sPatlak image reconstruction algorithm breaks down the previous inte-
grated EM process into two steps: (i) a single tomographic projection-based EM update of the
dynamic image estimates, based on the measured 4D data, followed by (ii) multiple nested
image-based EM updates of the kinetic parameter estimates, based on the dynamic image
estimates from step 1. The nested ML-EM implementation utilizes the ‘optimization transfer’
principle (Lange et al 2000), which ‘transfers’ the optimization target from a single and more
complex global objective function to simpler surrogate functions, that vary at each global
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original objective function L(y|m;)

Quw(x¥Im;) < L(ylmY¥)
Qw(x¥|mY) = L(ylm¥)

wt surrogate obj.
function Q,, (x"|my)
VRN mY = argmaxy, Q,, (x|m)

(w+I)™ surrogate obj. L(ylm?) > L(ylm¥~1)
function Q,, ., (x"*1|m,)

Poisson log likelihood

sPatlak parameter vector mg

Figure 3. (Left) Diagram of ML-EM global objective function L (red curve) and
surrogate functions Q,, (blue) and Q,,+; (green) for global iterations w and w+ 1,
respectively. They all are Poisson log-likelihood functions depending on the sPatlak
parameter vector m,. The basic principles of optimization transfer are illustrated as
follows: (a) each value of the wth surrogate function is either lower or equal to the value
of the global objective function at the same m;. In addition, (b) the maximum value
of wth surrogate function is equal to the value of the global function at m}. The set of
parameters maximizing the wth surrogate objective function is considered the optimal
for wth iteration, as described in (c). Finally, m; yields higher values for the global
objective function, as the iterations progress (d).

ML-EM iteration step, as illustrated in figure 3 (Carson and Lange 1985, Wang and Qi 2010,
2012, 2013, Karakatsanis and Rahmim 2014a).

In the nested sPatlak 4D ML-EM framework, both the global objective function L and the
surrogate objective function Q,,, for each iteration w, are defined as Poisson log-likelihood
functions of the measured dynamic data Y and the dynamic image estimate x" at iteration w,
respectively, given the sPatlak parameter vector my. In fact, the nested section of the sPatlak
4D ML-EM algorithm for global iteration w utilizes the latest dynamic image estimate x"
from step 1 to return, after several sub-iterations, the m parameter vector that maximizes
the wth iteration surrogate log-likelihood function Q,,(x" |my) (figure 3(c)). Subsequently, the
returned value mz} initializes the tomographic ML-EM update (step 1) of the next, i.e. (w+ 1)
th iteration.

We note that our scheme employs an ML-EM optimization algorithm for both the
external tomographic and the nested image-based iterative update processes, while the
respective Poisson log-likelihood functions satisfy the criteria described in figures 3(a)
and (b). In addition, the external and nested Poisson log-likelihood maximization problems
described above are equivalent to minimizing the Kullback-Leibler (KL) distance metrics
(Barrett and Myers 2004) between the measured dynamic data ¥ and dynamic images x",
for the tomographic estimation problem, and between the estimated dynamic images x"
and the new sPatlak parameter estimates m; for the image-based parametric estimation
problem. Under these conditions, the 4D ML-EM nested estimation of the sPatlak para-
meters is legitimately performed, as the Poisson distribution in the measured counts is
fully accounted, and the EM convergence of the nested 4D ML-EM algorithm is ensured,
as illustrated in figure 3(d).
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Below, we present the theoretical framework of the nested sPatlak 4D ML-EM algorithm
(Wang and Qi 2010). In this work, we extended its application to raw PET data from multiple
beds. Initially, for every global ML-EM iterative cycle, an updated dynamic image set Xew is
estimated for each bed utilizing the large tomographic system matrix P and the respective bed
dynamic data Y (step 1):

o R Vo) PT[ " ] (8a)
new SR Vv
P"1 Y (Kota, Void)
or, equivalently:
x;%,old yi,n
X = B — (8b)

ZBY i / ZEszS,nkms,jk
i Jj k

Subsequently, the algorithm performs a series of nested ML-EM updates of the kinetic
parameter images K and V, corresponding to each bed, by employing the considerably smaller
in size sPatlak model matrix By and the respective PET image estimates Xpew from step 1 as a
reference (step 2):

i{\new — old SP( )[ new :|
Z Sp() ; " (Koids Vola) (9a)

n=1

V;ew — old Z CP( ) [ new :| (9b)

K )
Z Co(n) ™= "(Kotas Vola)
n=1
or, equivalently:
old n
m x
new s,jk _ “jnmew
My jk = DBk | = c)

k
ZBsnk n " ZBs”kmAJk

Then, the nested sPatlak 4D ML-EM steps above are repeated for the data of the remaining
beds to produce the respective sPatlak images. Finally, all images of the same parameter type
are combined, after accounting for any axial overlapping slices between beds, to create multi-
bed or WB sPatlak images.

The first step of each global EM iteration cycle involves forward- and back-projection
3D tomographic operations, which are often computationally expensive due to the large
size of P. On the contrary, the nested EM loop of the second step employs the much
smaller model matrix By, thus allowing for much faster forward- and back-projection
operations to transform between parametric and dynamic image space. Thus, by nesting
multiple faster update steps of the kinetic parameter estimates (equations (9a) and (9b))
within every tomographic update step of the dynamic images (equation (8a) or (8b)), the
global convergence rate of the 4D reconstruction algorithm is effectively accelerated, in
terms of total computation time (Wang et al 2010, Wang and Qi 2013, Karakatsanis and
Rahmim 2014a).
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2.3.2. Nested direct 4D WB gPatlak reconstruction. For the non-linear gPatlak model let us
denote:

e K, kjoss and V: column vectors denoting respective Kj, kjoss and V parametric images,

o M, = [K; kioss; V1. the overall gPatlak parametric image matrix,

° mé = (K, kl.,, V7): vector of the three gPatlak parameters at voxel j,

e ¢, d=1...D: variable denoting each of the D convolution time points (different from

t,, n = 1... N, variable for the N mid-frame time points)

° hi,(K { , k{oss, t)=K ,-je_k'jéss’il: gPatlak impulse response element at time point £, for voxel j,

o/ = [hé]il: impulse response column vector at voxel j and

°x = [x;?]r’:’ZI: TAC at voxel j.

According to gPatlak model assumptions in (3) the TAC at every voxel j can be modeled
as follows:

X =h (K], ko ") @ Co(t')+ VICo(t") (10a)

loss?

By approximating the above time convolution operation with a summation over D finely sam-
pled time convolution points t/d, we can also model every voxel TAC x; as a vector-matrix
product:

x; = Or’ (10b)

where r/ = [h/; V/]" is the Patlak response vector at voxel j, constructed by appending the V/
unknown parameter at the end of the impulse response vector h/, and © is the N x (D + 1)
matrix derived from the Toeplitz matrix (Heinig and Ross 1984) of Cp(t,,) for D temporal con-
volution points:

Gty — 1) - Cp(ty —1tp)  Cp(t))
o-| : . :
Colty — 1)) -+ Golty — 1) Co(ty) an

For the proposed nested gPatlak 4D ML-EM WB reconstruction algorithm, each global
iteration step is now decomposed into three distinct respective steps, unlike the two steps
previously described for nested sPatlak 4D algorithm.

The first step, which is identical with step 1 of the nested sPatlak 4D method, involves a

single update of the estimated TAC x; = [x;?];V:l at voxel j, through a tomographic EM estima-

tion process, and is often the most computationally expensive, as it is applied consecutively to
all N dynamic frames and employs the large tomographic matrix P. Thus, ford = 1... D and
n=1...N, we have for step 1:

n
n xj,old Z yi,n

X =

i J !

Subsequently, the previously estimated TAC x; ney of voxel j from step 1 and the measured
data in ® are employed to estimate the Patlak response vector r/ of size D + 1, through the
following nested iterative ML-EM process (step 2):
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n

xj,new

(13)

j réld
r Z@

new — nl ;
E J
Z ®nl n G)nlrl,old
n !

Thus, after all nested sub-iterations in step 2 of current global iteration have been com-
pleted, r/_, is estimated, which includes the impulse response vector &/ and gPatlak parameter
V4. Subsequently, in step 3 of current global iteration, the gPatlak parameters K { and ki

loss
are analytically derived, as it will be described later. By repeating the previous 3 steps for a
number of ML-EM iterations in all voxels of a particular bed position, the gPatlak images are
reconstructed for that bed. Finally, this process is repeated for the dynamic data of the rest of
the beds, to ultimately produce WB gPatlak images.

Similarly with sPatlak, the presented nested gPatlak 4D algorithm targets at Poisson log-
likelihood types of global and surrogate functions and employs the ML-EM algorithm for the
external and the nested optimization problems. The main difference lies in the type of nested
estimates targeted by the gPatlak algorithm. Due to the non-linear relationship between the
gPatlak parameters and dynamic image space, the latter could not be estimated directly from
the nested ML-EM approach employed in the previous section for nested sPatlak 4D case.
Instead, the Patlak response vector r/ at each voxel j is now estimated through the same nested
ML-EM update process, as it is linearly related with the dynamic image estimates, according
to equation (10b). Therefore, the same conditions apply to gPatlak case, as those illustrated in
figure 3, if sPatlak parameter vector m; is replaced by the Patlak impulse response vector r. In
fact, if kjog 1S set to zero, the gPatlak 4D formulation in equation (10b) reduces to the sPatlak
framework and the direct linear relationship between parametric and dynamic image space is
restored.

The updated Patlak response vector 7/ maximizes now a surrogate Poisson log-likelihood
given the current TAC estimate x; from step 1, as illustrated below:

N
Iley = argmax Zx;{new log xj(r/) — x'}(r)) (14)
r’ n=1

The first parameter to be updated at every nested ML-EM iteration of equation(13) is V7,
as the last element of the updated vector 7. Then, inspired by a similar analytical derivation
for a reversible 1-tissue compartment kinetic model (Yan et al 2012, Wang and Qi 2013), the
analytical solutions for K and kj,s gPatlak parameters at every voxel j can be calculated as
follows (Karakatsanis and Rahmim 2014a):

D
N
Z tdhd,new
d=1
D .
j
Z hd,new
d=1
where S~ is the inverse of the function below:

D .
Z t;,e*kljosstll
S(hioss) = 5 ——— (16)
Z efkljosslld
d=1
In order to enhance computational efficiency, a look-up table for S(kjss) can be pre-
calculated and loaded to computer memory at the start of the reconstruction algorithm for

J _ ¢-1
kloss,new =S

15)
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a range of possible ki initial values. Then, during reconstruction, this look-up table can be
utilized to invert S(kjos) function and efficiently determine the updated estimate k{;)ss‘new with
equation (15).

Finally, the tracer influx rate constant parameter K7 _ can be also analytically calculated

i,new
and ki

{oss.new as follows:

from the current estimates 7/,

D .
J
Z hd,new
d=1

D .

7

Z eikljoss,newld

d=1

Although the S(kjos) look-up table is pre-loaded, the estimation of gPatlak parameters K {
and k{_, from the current # estimate may be computationally inefficient, if repeated for each

J =
Ki,new -

(7)

nested sub-iteration. Besides, only the EM update of #/ is strictly required to maximize the sur-
rogate EM log-likelihood as in equation (14). Therefore, here we propose updating only the r/
vector at every nested sub-iteration, except for the last one wherein the gPatlak parameters K {
and k{ _ are estimated as well.

Furthermore, we recommend not using the newly estimated K/ and k{ , parameters to
update A/ estimates of the new global iteration cycle. Aside from the observation that such an
update would be redundant and only add computational cost, as A/ is already updated before,
it can also be ‘risk-prone’ for the proper global EM convergence of the algorithm. The risk

lies in the estimation of K/ and k{, . parameters, which is not exclusively driven by the nested
ML-EM process (steps 1 and 2), as was the case with sPatlak 4D method. Now, an analyti-
cal derivation is additionally employed in the end (step 3), which forces the new estimates

K/ and ki to be related with A/ = [h/] according to the following equation: //, = K/e Xoxa,
d=1... D, provided S(kjoss) inversion in equation (15) is accurate. Therefore, depending on
the sampling density of the S(kjoss) discrete look-up table and its range (equation (16)), which
can both be freely determined by the user, the linear interpolation accuracy of S(kjoss) inversion
in equation (16) may be degraded, therefore affecting the bias in the parametric K; and kjogs
estimates. As a result, the optimization transfer requirements may not be strictly fulfilled, if
the inversion of the S(kjoss) look-up table is interfering with ML-EM estimation at every global
iteration step. Although we have observed a negligible error associated with the analytic
calculations even when moderate sampling rates are selected (1000 samples uniformly drawn
from a (1073,1) kyoss range), the overall convergence of the ML-EM algorithm may neverthe-
less be affected after several global ML-EM iterations. Therefore, to ensure the proper EM
convergence properties of the gPatlak 4D algorithm and save computational time, the r/ vector
of the next global tomographic iteration in equation (12) should be updated directly from the r/

estimate of the last nested sub-iteration, denoted as réld in equation(13).

2.3.3. Initialization schemes of the 4D Patlak reconstruction methods. Normally, conven-
tional 3D ML-EM iterative reconstruction algorithms are associated with objective functions
that do not require any special initialization scheme. In this study, all 3D ML-EM methods
have been initialized with unity values. The sPatlak 4D algorithms are also characterized by a
sufficiently stable EM convergence when initialized with unity Kj and V images, due to their
linearity and robustness, and thus no special initialization was applied to this class of methods.

Nevertheless, non-linear 4D reconstruction methods involve more complex objective func-
tions, and a more advanced initialization scheme may be helpful. In particular, gPatlak 4D
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Table 1. Published '8F-FDG kinetic parameter values for simulations (Okazumi et al
1992, 2009, Torizuka et al 1995, 2000, Dimitrakopoulou-Strauss et al 2006).

Regions ky (ml (min x g)~") ky I min~") k3 (1 min~"') kg (1 min~") Vp (ml ml~")

Normal liver 0.864 0.981 0.005 0.016 —
Liver tumor 0.243 0.78 0.1 0.002 —
Normal lung 0.108 0.735 0.016 0.013 0.017
Lung tumor 0.301 0.864 0.097 0.001 0.168
HCC tumor 0.283 0.371 0.057 0.012
Myocardium 0.6 1.2 0.1 0.001 —

Note: Vi, denotes the blood volume fraction in tissue. Tumor kinetic parameter values may
correspond to primary or metastatic malignancies in the respective region.

algorithms involve non-linear parameters, and thus, their EM convergence is sensitive to ini-
tialization. Therefore, for gPatlak 4D nested algorithm we evaluated (i) a conventional scheme
involving initialization of Kj and V estimates with unity values, and (ii) a novel sPatlak-based
scheme, where K; and V parameters were initialized with respective sPatlak 4D estimates.
In both cases, kg initial value was set to zero, which is equivalent to the sPatlak method.
Although initialization with zero values is not recommended in ML-EM algorithms to avoid
trapping of estimates to zeroes in subsequent iterations due to the multiplicative update mech-
anism, ko belongs to an exponential term in the gPatlak model and thus zero is effectively
translated as the unity value. The number of sPatlak ML-EM iterations employed to produce
the parameter values for gPatlak initialization were determined based on noise-bias trade-off
performance in simulated data.

2.4. Design of simulation study and image reconstruction strategy

For the purposes of the simulation study, we initially modeled a set of realistic TACs for
various characteristic regions of the human body by employing FDG kinetic parameters from
literature (table 1), assuming Feng input function model (Feng e al 1993) and a reversible
2-tissue-compartment model.

Then, a dynamic series of noise-free emission images were generated by assigning the
modeled TACs to the respective regions of a voxelized XCAT human torso digital phantom
at the time frames of the proposed protocol (figure 1). A total of six tumor regions were also
added: three in the normal liver (A1, A2 and A3) and three in the right lung (B1, B2 and B3)
background regions, with the members of each group having diameters in descending order of
15, 10, and 8 mm, respectively. Finally, tumor groups A and B were assigned the kinetics of
liver and HCC metastatic tumors, respectively (table 1).

Later, analytic simulations were conducted by forward projecting the emission images with
STIR (Thielemans et al 2012) using the Biograph mCT system geometry (Jakoby et al 2011).
Then, the generated sinograms were attenuated, according to the XCAT attenuation factors,
and scaled based on a factor accounting for the sensitivity of the mCT scanner and the time
frame duration. Quantitative Poisson noise was then added. Finally, the generated noise-free
and noisy dynamic PET projection data were all reconstructed in either 3D or 4D mode, using
current and newly developed STIR ML-EM libraries to produce dynamic PET and Patlak par-
ametric images, respectively. A diagram illustrating the design of the simulated study, along
with examples of reconstructed Patlak images, is presented in figure 4.
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Figure 4. Diagram illustrating the steps for generating realistic simulation data of
quantitative levels of noise and the subsequent reconstruction analysis to compare
direct 4D versus indirect (s/g)Patlak imaging methods.

For the evaluation of the 4D simulated data, ground truth kinetic parameters were known.
Thus, the quantitative analysis was first conducted in terms of percentage (%) normalized
bias (NBias x 100) and normalized standard deviation or noise (NSD x 100), where NBias
and NSD were calculated over F = 20 simulated realizations, according to Karakatsanis et al
(2013a), paragraph 4.2. Both metrics were extracted from four characteristic tumor regions
(A1, A2, Bl and B2), as a function of the number of ML-EM iterations and plotted together to
form noise-bias trade-off curves for each ROI and evaluated method. In addition, we assessed
the mean target to background (TBR) and contrast to noise ratio (CNR) metrics for the same
tumor regions after averaging over the 20 realizations, according to equations (18) and (19)
below.

F

1
TBRarget_rROT = = > (mean e roI, — MeANpckgraROL)/MEANpckgrd ROI, (18)
f=1
F
1 (mean arget_rOI, — MEaNpckgrd_ROL,)
CNRla.rgel_ROl - = / Std_devbckgrd_ROIf (19)
Fo MeaN bekgrd_ROI,

where meang,ger_rol, and meanykgrd_rol, are the mean values over the target (tumor) and back-
ground (normal organ) ROIs, respectively, for f realization, and std_devbckgrd_Rol ’ is the spatial
standard deviation of the background ROI, as defined in Karakatsanis ef al (2013a), paragraph 4.2.

For the clinical validation, the Siemens Biograph mCT PET/CT scanner (Jakoby et al
2011) was used together with the validated scan protocol described in section 2.1. A set of 5
clinical WB dynamic datasets have been reconstructed with the presented methods. As STIR
currently supports only non-TOF projectors, the mCT TOF PET raw data were first converted
to a non-TOF format. Two suspected tumor regions of high focal uptake were identified to
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Figure 5. (a) Overview of noise-free Kj and ko5 images and (b) noisy Kj images from
simulated 4D PET data employing indirect and direct (s/g)Patlak methods. The orange
and green bars denote sPatlak and gPatlak ML-EM global iterations respectively for the
images directly above. In the last 2 rows, the yellow arrow position between the two
bars designates at which iteration were the gPatlak estimates, on the right, initialized
from the sPatlak estimates, on the left. (c) Quantitative K; noise-bias trade-off analysis
on four ROIs across 20 noise realizations. The red and green colors correspond to
sPatlak and gPatlak methods, while the continuous and dotted delineations indicate
direct and indirect methods, respectively. The triangle markers on red curves denote
non-nested sPatlak method. Evaluations were conducted every 21 global ML-EM
iterations, each consisting of 20 nested sub-iterations. Thus, gPatlak-4D was initialized
after 3 x 21 = 63 sPatlak ML-EM iterations.

assess the clinical feasibility and quantitative performance of direct 4D WB Patlak imaging
methods against conventional SUV and indirect Patlak analysis in clinical oncology. In all
cases, the TBR and CNR scores were evaluated, as a function of the ML-EM global iterations,
according to equations (18) and (19) for F = 1.

In this study we chose to evaluate the effect on convergence of non-nested versus nested
algorithms in the context of a pure ML-EM framework, i.e. by utilizing data from all projection
angles at every update cycle of the reconstruction algorithm. Thus, we were able to maintain
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Figure 6. TBR (1st column) and CNR (2nd column) quantitative analysis for A1, A2,
B1 and B2 target ROIs on simulated K; parametric images for a range of indirect and
direct (s/g)Patlak methods. The same number of nested Patlak ML-EM sub-iterations
and gPatlak-4D initialization scheme are employed, as for figure 5. TBR and CNR
scores were averaged over 20 noise realizations with the standard deviation illustrated

with error bars.

a common framework to enable direct comparison with previous related ML-EM evaluation
work on WB Patlak K; clinical imaging studies (Karakatsanis et al 2013a, 2013c, 2015a). In
addition, we isolated the effects on convergence from other factors, such as that of ordered
subsets EM (OS-EM) implementations, which are also expected to accelerate convergence
by subsetizing projections at each update cycle. Nevertheless, STIR platform also supports
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OS-EM algorithm and our preliminary results indicate the same degree of convergence accel-
eration between nested ML-EM and nested OS-EM when 21 subsets are employed for the
latter, which is the standard selection for most clinical studies with the mCT scanner.

3. Results

3.1. Performance evaluation from 4D simulations

3.1.1. Noise-free direct 4D versus SUV imaging. The noise-free dynamic PET SUV cardiac
images in figure 5(a) (1st row) illustrate the variability introduced to each simulated lesion
uptake and contrast during the first 45min p.i. due to the modeled kinetics (table 1). The
simulated dynamic PET images were produced from 3D ML-EM reconstruction (3 cycles of
21 iterations each) of dynamic cardiac data which were sampled according to our validated
WB dynamic PET protocol (figure 1). Moreover, the reconstructed noise-free indirect and
direct (s/g)Patlak K; images in the 2nd row of figure 5(a) converged to higher lesion TBR
contrast scores than any of the dynamic noise-free PET images for both ROI groups A and B.
Therefore, in the absence of noise, Patlak may theoretically offer information beyond
SUV and thus the complementary application of the two may enhance lesion detectability
performance.

3.1.2. Direct 4D versus indirect (s/g)Patlak WB imaging. In noise-free conditions, indirect
and direct methods are expected to match in performance, after convergence is attained.
Indeed, no visually distinct difference was observed in the noise-free K;j images between the
two method classes (figure 5(a)). In the presence of noise, however, the benefit in noise and
resolution of properly initialized direct 4D versus indirect Patlak analysis is illustrated when
visually comparing the noisy Kj simulated images (figures 4 and 5(b)), especially for the tumor
lesions of B group in the right lung. Moreover, the noise-bias trade-off curves (figure 5(c))
clearly demonstrated, for all evaluated ROIs, the superiority of 4D sPatlak and properly ini-
tialized 4D gPatlak algorithms, relative to the respective indirect methods. In particular, we
observed significantly reduced noise at matched bias (resolution) and vice versa for the direct
4D versus the indirect methods in all ROIs. Finally, the 4D methods converged to distinctly
smaller bias values than indirect methods, thus suggesting reduced noise-induced bias com-
pared to indirect Patlak.

These observations were further supported by the TBR and CNR quantitative analysis on
the same four Kj image ROIs in figure 6. Nevertheless, it should be noted that 4D imaging
methods were associated with a relatively higher gain in CNR rather than TBR scores, as the
main benefit of direct over indirect parametric reconstruction is the reduction of the noise in
the K; images. The TBR relative enhancements of 4D over indirect algorithms can be attrib-
uted to the reduction of noise-induced bias for the former, as also indicated by the noise-bias
trade-off analysis in figure 5(c). Nevertheless, the ground true TBR Kj contrast, as calculated
from the true input values of our simulation study, was underestimated in all cases. In all
cases, the observed bias in the lesion Kj estimates and respective underestimated TBR scores
becomes higher for smaller diameters (A2 and B2 ROIs), which we attribute to the partial
volume effects.

3.1.3. sPatlak versus gPatlak 4D WB imaging. A visual inspection of the ground truth K; and
kioss images and their comparison with the noise-free reconstructed Kj images in figure 5(a)
(2nd row) suggests that, in general, the gPatlak indirect 3D and direct 4D methods were asso-
ciated with more accurate K; estimates than respective sPatlak methods. Furthermore, both
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Figure 7. K noise-bias trade-off, TBR and CNR quantitative analysis over 20 noise
realizations for simulated B1 ROI for different initialization schemes (Ist column)
and number of nested ML-EM Patlak sub-iterations (2nd column) for a range of
conventional and novel 4D-Patlak methods. The sPatlak-4D and the first gPatlak-4D
method (red and green curves at 1st column) were initialized with the conventional
method (Kj = 1, kjoss = 0, V = 1). All methods in 1st column utilized 20 sub-iterations.
Finally, all gPatlak-4D methods of 2nd column were initialized with kjoss = 0 and K; and
V values estimated from 63 sPatlak MLEM iterations.

noise-free and noisy gPatlak 4D reconstructions yielded relatively higher K; TBR contrast
scores, than respective sPatlak reconstruction, for tumor ROIs of group B, where a relatively
higher degree of uptake reversibility (k4 = 0.012) was introduced in our simulations (table 1).
Thus, our observations demonstrated the theoretical advantage of gPatlak over sPatlak algo-
rithms, when evaluating regions exhibiting non-negligible uptake reversibility. However, the
same results indicated lower K; image noise for sPatlak versus the gPatlak 4 D methods. The
respective noise-bias curves (figure 5(c)) confirmed the previous findings, as they revealed
smaller bias at matched noise levels and higher noise at matched resolution (bias) for gPatlak

4D reconstruction methods.

Furthermore, in terms of lesion detectability performance, the results in figure 6 suggest
that the main differences between sPatlak and gPatlak 4D methods were observed in TBR and
CNR scores, with TBR being affected more profoundly. We attribute this finding to the rela-
tively higher noise levels for gPatlak imaging, even within the 4D framework. Although bias
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and TBR contrast are enhanced with gPatlak 4D methods, the increased noise associated with
gPatlak non-linear model eventually limits gPatlak 4D CNR scores. As a result, gPatlak 4D is
not increasing the CNR scores as much as it enhances the TBR scores.

3.14. Conventional versus nested Patlak 4D ML-EM and number of nested sub-iterations. The
expected gain in ML-EM convergence rate for the nested relative to the conventional, i.e.
non-nested, 4D sPatlak implementations was illustrated qualitatively and quantitatively in
figures 5(b) and (c) respectively. In particular, visual inspection of B1 and B2 lesions contrast
as a function of the iteration cycles in simulated K; images of figure 5(b) suggested a faster
contrast recovery, and thus convergence rate, for the nested sPatlak K; images. In addition,
the respective noise-bias curves in figure 5(c) indicated smaller bias values at matched noise
levels for the nested sPatlak 4D implementation.

Moreover, a mildly faster 4D ML-EM convergence was recorded as the number of nested
sub-iterations increased per global iteration step. This is conjectured from all three plots of
the 2nd column of figure 7. However, the gain in bias and TBR contrast became progressively
negligible when more than 20 sub-iterations were involved, as convergence had already been
established at earlier iterations in these cases. Meanwhile, the noise was being steadily dete-
riorated in the same cases, due to the higher number of nested updates involved per global
iteration step. As a result, for higher than 20 nested sub-iterations, image noise kept increasing
relatively faster than TBR lesion contrast and, consequently, CNR started dropping at later
iterations. Although not included in the results, it should be noted that a very small number of
sub-iterations (< 10) resulted in consistently slower convergence in all nested 4D algorithms.

3.15. Patlak 4D ML-EM initialization schemes. The noise-free images in figure 5(a) dem-
onstrate that the (s/g)Patlak 4D ML-EM algorithms converge in theory to the global optimal
solution regardless of the initialization method. Thus, our findings indicated proper theor-
etical EM convergence properties for the implemented algorithms. In the presence of noise,
however, the conventional method of initializing 4D ML-EM with K; = 1, kjoss = 0 and V=1
parameter values, yielded correct EM convergence only in the case of 4D sPatlak method,
as it can be conjectured by comparing 3rd and 4th row in figure 5(b). Nevertheless, as the K;
images of the last 2 rows in figure 5(b) illustrate, higher Kj lesion contrasts were attained with
4D gPatlak, compared to sPatlak (3rd row), after initializing the gPatlak 4D method with K;
and V estimates from the first 21 (5th row) or 3 x 21 = 63 (6th row) sPatlak iterations.

The importance of sPatlak-based initialization for gPatlak 4D algorithms was further dem-
onstrated by the noted bias reduction as well as TBR and CNR score enhancements in figure 7
(1st column plots), when more sPatlak 4D global iterations were involved in the initialization
of gPatlak 4D algorithm. However, after 3 cycles of 21 sPatlak ML-EM initial iterations, no
additional benefit was observed for gPatlak 4D EM convergence rate. Thus, under noisy con-
ditions, gPatlak 4D reconstruction may require a minimum number of sPatlak 4D iterations
for its initialization, to ensure proper convergence and thus high quantification accuracy in K;
reconstructed images.

3.2. Clinical demonstration of feasibility and benefits of 4D WB Patlak imaging

In figure 8, we present a set of indirect and direct (s/g)Patlak K; WB images from a patient
dataset at a 10—45 min p.i. scan time window. Moreover, the respective SUV WB PET image
is also shown, as acquired at 60 min p.i. with the standard-of-care static PET protocol. The
directly reconstructed (s/g)Patlak WB Kj images were estimated after five cycles of 21 ML-EM
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Figure 8. (1strow): clinical WB (s/g)Patlak K; images, as estimated either indirectly or
directly from the raw dynamic (10-45min p.i) '*F-FDG PET data with 4D and indirect
methods with patient arms at the bottom position to withstand longer scan duration.
Also, the respective static SUV image obtained at 60 min p.i., after repositioning same
patient with arms in the standard upper position (2nd and 3rd rows): TBR and CNR
scores versus iterations for a range of (s/g)Patlak and SUV methods from a chest and a
liver suspected tumor lesion ROIs.

global iterations each. A nested 4D ML-EM implementation was employed at each bed posi-
tion involving 20 sub-iterations. Furthermore, the first 3 out of the 5 ML-EM iteration cycles
of the gPatlak 4D WB reconstruction consisted of sPatlak 4 D ML-EM iterations to initialize
the 4th cycle of gPatlak ML-EM iterations (figure 9).

3.2.1. Direct 4D Patlak versus SUV WB PET imaging in clinic. The spatial noise levels visu-
ally observed in the background regions of the selected liver and chest target ROIs of WB
4D (s/g)Patlak K; clinical images of figure 8 were comparable to the respective static SUV
image noise. This is also evident by comparing the TBR and CNR scores of respective clinical
K; and SUV images for both evaluated ROIs in the same figure. In particular, the superiority
of Kj imaging, relative to SUV, in terms of TBR contrast is also retained to nearly the same
or higher degree in terms of CNR score. As CNR is derived from TBR after normalizing the
latter with spatial noise in the target background, the previous observation suggest similar or
lower quantitative levels of spatial noise between direct 4D K; and SUV clinical images, at
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least for the two evaluated ROIs. Thus, our results demonstrate the clinical feasibility of 4D
WB Patlak K; methods, when applied on a streamlined 6-pass WB PET protocol. In addi-
tion, the superior TBR and CNR 4D K; scores, relative to SUV, on the two identified ROIs
indicate potential enhancement of tumor detectability performance, when complementing the
currently established in clinic WB SUV imaging protocols with the proposed direct 4 D WB
(s/g)Patlak methods.

3.2.2. Direct 4D versus indirect Patlak WB clinical imaging. The images in figure 8 illustrated
the lower noise of direct 4D relative to indirect Patlak methods. Moreover, the quantitative
plots in figure 8 demonstrated the superior TBR and CNR performance for all 4D Patlak meth-
ods, compared to the respective indirect methods, particularly for the chest ROI. The improve-
ment was more evident in terms of the CNR metric, owing to the lower noise levels observed
in the 4D reconstructions versus indirect Patlak analysis. Our clinical findings confirmed the
simulation results and can be explained by the more efficient utilization of the acquired data
with 4D Patlak algorithms. Finally, the quantitative TBR and CNR analysis suggested that the
gain observed when switching from indirect to direct 4D Patlak methods is relatively larger
than the respective gain between standard and generalized Patlak models.

3.2.3. sPatlak versus gPatlak 4D WB clinical imaging. Our clinical validation results in figure 8
demonstrated the superior TBR lesion contrast scores for nested gPatlak 4D K; images, both via
the qualitative inspection of the respective patient WB Kj images as well as through the quantita-
tive TBR analysis in both evaluated ROIs. Moreover, despite the higher noise levels observed in
gPatlak K; images, relative to sPatlak, the highest clinical ROI CNR scores were systematically
observed for the former. Besides, the clinical TBR and CNR score differences between the two
4D Patlak methods were not as significant as the respective differences between (i) indirect
sPatlak and gPatlak or (ii) direct versus indirect Patlak methods. In other words, the differences
between the two Patlak models were less significant in the 4D framework.

3.2.4. Clinical impact of number of nested sub-iterations and gPatlak initialization. The series
of WB Kj images in figure 9 illustrate the convergence of sPatlak and gPatlak 4D methods,
when applied to the same patient dataset and after being initialized with the proposed schemes.
The two 4D algorithms converged to different but similar sPatlak and gPatlak solutions in the
last two cycles of 21 iterations.

Moreover, the TBR and CNR plots describe the quantitative effect on 2 chest ROIs of the
number of nested ML-EM sub-iterations as well as that of sPatlak-based initialization for
gPatlak 4D algorithm. In particular, the plots of the 2nd row suggested superior TBR and CNR
performance for both ROIs in clinical gPatlak-4D K; images, when at least 3 x 21 ML-EM
sPatlak iterations are employed for its initialization. Any higher number of iterations only
resulted in negligible convergence acceleration. Furthermore, the TBR and CNR scores of
the 3rd row suggested a minimum number of 20 nested ML-EM sub-iterations to sufficiently
accelerate convergence without increasing noise in the K; images.

4. Discussion

4.1. Benefits, limitations and respective solutions for nested 4D (s/g)Patlak WB ML-EM
algorithms

Initially, our evaluation concentrated on the benefits of direct 4D versus indirect sPatlak WB
imaging. The simulation results illustrated considerable noise reduction at matched bias in Kj
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Figure 9. (1st row): clinical WB K; images, estimated directly from the raw data of 6
WB passes with nested (s/g)Patlak 4D-MLEM methods. sPatlak 4D algorithm has been
initialized with conventional method, while gPatlak 4D method utilizes the estimates of
previous sPatlak 4D method after 3 cycles of 21 ML-EM iterations. All methods employ
20 nested sub-iterations. (2nd and 3rd rows): clinical TBR and CNR evaluation on 2
selected chest ROIs drawn from patient WB Kj images as a function of the initialization
scheme and number of nested sub-iterations employed by the proposed (s/g)Patlak 4D
WB reconstruction methods.

images when 4D reconstruction was employed, especially for regions of low uptake signal
and therefore high noise. Moreover, the respective clinical evaluation on clinical data revealed
improved CNR Kj scores at matched contrast in suspected tumor regions for the 4D methods.
Nevertheless, a known limitation for 4D parametric reconstruction algorithms is the slower
convergence rate compared to the indirect methods, thus constraining their clinical adoption.
Therefore, we suggested exploiting the optimization transfer principle to enable convergence
acceleration via a nested ML-EM implementation framework. By nesting multiple image-
based ML-EM Patlak parameter updates within each slower tomographic ML-EM iteration
step, we allowed for a larger number of Patlak parameter updates per global iteration at a
negligible added computational cost and thus effectively accelerated the convergence.
Subsequently, the study focused on 4D reconstruction performance assessment between
sPatlak and gPatlak ML-EM methods with the simulation results indicating reduction in K;
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bias for gPatlak at matched noise levels. The comparative evaluation on WB K; patient images
also suggested superior CNR scores at matched number of iterations. However, gPatlak 4D
method assumes a non-linear model for the relationship between the final parameter esti-
mates and the dynamic data. Our proposed nested ML-EM implementation overcame this
issue by targeting the iterative estimation of the overall gPatlak response function, instead
of the individual gPatlak parameters, as only the former is linearly related with the dynamic
image estimates. Then, a nested ML-EM implementation similar to sPatlak 4D method was
made possible. Eventually the individual gPatlak parameters were estimated analytically at
the end of the last nested sub-iteration from the last response vector estimate. Besides, the
ML-EM estimated response vector and not the gPatlak parameters were being used in the next
global iteration. Thus, the designed algorithm fully retains the ML-EM properties to ensure
KL distance minimization between the data and the estimates and, thus, its theoretical EM
convergence to a global ML solution (Barrett and Myers 2004). Indeed, our evaluation on
both simulated and clinical data revealed a faster convergence for the nested 4D (s/g)Patlak
algorithms, thus demonstrating their higher clinical adoptability.

Nevertheless, the gPatlak 4D ML-EM optimization becomes more susceptible to data
noise, as now the number of the response vector elements to be estimated is considerably
high. On the other hand, the sPatlak 4D algorithm, although relatively less quantitative than
gPatlak, is more robust to noise, as it optimizes a log-likelihood function with respect to just
two parameters: K; and V. Therefore, we proposed initializing the gPatlak 4D algorithm with
estimates derived after a few sPatlak 4D ML-EM iterations and zero k.. Indeed, both the
simulated and clinical results showed incomplete gPatlak 4D convergence, unless the sug-
gested sPatlak-based initialization scheme was applied.

Although our simulation and clinical findings have confirmed the theoretical expectations,
we recognize the clinical value of expanding current validation study to a larger cohort of
patients to involve a wider range of tracer kinetics and commercial scanner acquisition and
reconstruction technologies. In fact, we are currently conducting a systematic assessment of
TOF and resolution modeling techniques on direct 4D and indirect WB (s/g)Patlak imaging
methods (Karakatsanis et al 2014b, 2015¢).

4.2. Complementing conventional 3D SUV with 4D Patlak PET image reconstruction

Static 3D PET imaging utilizes the clinically established SUV metric to estimate a temporal
instantiation of the tracer dynamic distribution, as integrated over a time frame, normalized to
injected dosage and lean body mass (Wahl and Buchanan 2002). Nevertheless, SUV is con-
sidered semi-quantitative, as it is dependent of the acquisition time window and the metabolic
and dietary condition of the subject (Keyes 1995, Huang 2000, Thie 2004, Boellaard 2011,
Durand and Besson 2015).

On the contrary, dynamic PET imaging can track the signal distribution over space and
time, thus enabling imaging of parameters describing the physiological in vivo uptake of
the administered tracer. By correlating the measured tissue TACs with the blood input func-
tion, graphical analysis methods enable quantitative image-based assessments that may be
substantially less dependent on the acquisition time window and the current metabolic state of
the subject. As a result, 4D imaging may facilitate more objective evaluations between imag-
ing studies of the same subject, thus paving the way for enhanced quantification in treatment
response monitoring and image-guided diagnostic and therapeutic schemes.

Therefore, in this study we view the proposed 4D (s/g)Patlak reconstruction framework
mainly as a quantitative complement to the standard-of-care single-pass 3D PET SUV proto-
cols. The presented 4D imaging methods could constitute the early phase (0—40min p.i.)
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followed by the conventional SUV PET scan (60-80min p.i.). Alternatively, dynamic WB PET
acquisition could instead be delayed towards the more standard post-60 min windows and even-
tually replace single-pass WB SUV with a multi-pass WB scan. Then, the SUV metric would be
estimated by properly adding together the dynamic PET frames of each bed across time, while
the (s/g)Patlak K; metrics would be derived from 4D (s/g)Patlak reconstructions of the same
data. Although, this approach would alleviate the need for 2 anatomical scans, thus permitting
its application within a PET/CT framework too, it would also require inference of the missing
early section of the input function (Zhou ef al 2012, Karakatsanis et al 2015d). This method has
been evaluated in a combined SUV/Patlak clinical study (Karakatsanis er al 2015b).

4.3. Application scope of 4D generalized Patlak imaging

In this study, the presented 4D (s/g)Patlak methods have been designed and evaluated for
multi-bed or WB acquisitions to demonstrate their clinical potential in oncology, where
large axial FOVs are important for assessing potential metastatic tumors. Nevertheless, the
proposed methods can be also utilized in more specific clinical applications involving sin-
gle-bed FOVs, such as cardiovascular, neurologic or specific tumor type evaluation studies
(Dimitrakopoulou-Strauss et al 2002, Sanz and Fayad 2008, Oo et al 2013).

We laid emphasis on Kj image evaluation, as this parameter has been found to correlate well
with SUV metric over patient population (Freedman et al 2003). The K; parameter reflects a
principal kinetic component that conveniently summarizes a major portion of the clinically
relevant information contained in 4D FDG PET data. Nevertheless, we have also demon-
strated the importance of the ks parameter as well, in terms of K; quantification and TBR.
Furthermore, we observed that kjss and V images correlated well with the respective ground
truth values, although their robustness was found lower than that of K; and dependent on noise
and S(kjss) inversion accuracy. Despite our focus on Kj quantification, we acknowledge the
clinical potential of kjss and V imaging, especially when correlated with K; and SUV metrics,
and we plan investigating their clinical relevance in oncology and other disease mechanisms.

In addition, although this study has been focusing on 'F-FDG tracer, as this is the most
widely used PET radiotracer in oncology (Phelps et al 1979, Hustinx et al 2002), it could be
also well applied to other radiotracers of similar half-lives, such as BE pFLT (Been et al 2004),
BE_.FMISO (Thorwarth et al 2005), and '®F-NaF (Siddique et al 2011), utilizing equivalent
protocols. Moreover, the support for gPatlak model may enable robust kinetic analysis for a
range of tracers with varying degree of uptake reversibility in different tissues, thus widening
the application scope. Finally, all presented algorithms have been implemented within the
open-source STIR platform for a broader utilization by the research community.

4.4. Data utilization efficiency and noise characterization between 4D and indirect Patlak
imaging

In the direct 4D parametric PET image reconstruction framework, the complete 4D mea-
surements space is directly related with the kinetic parameters image space through a 4D
system response model. As a result, 4D algorithms directly exploit measurements from all
dynamic sinograms. On the contrary, indirect parametric imaging employs frame-by-frame
3D reconstructions only utilizing the counts from a single sinogram each time. As the latter
approach exploits measurements from a smaller pool of data, it will inevitably result in higher
noise levels that are subsequently propagated in the final Patlak images through the post-
reconstruction statistical regression estimation process. Therefore, parametric image noise is
expected to be lower with direct 4D algorithms, thanks to the more efficient utilization of the
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measured counts (Barrett et al 1994, Reader et al 2006). In addition, this difference becomes
more apparent for 4D PET data of low count statistics (Reader and Verhaeghe 2014), such
as in the case of dosage minimization (Karakatsanis ef al 2014¢e) or WB dynamic acquisition
protocols.

Indirect Patlak regression is conducted on the reconstructed images where the statisti-
cal noise is spatially correlated and unknown, as it depends on numerous factors, includ-
ing number of iterations, resolution modeling kernel and object shape (Barrett et al 1994,
Rahmim ef al 2013, Rahmim and Tang 2013, Ashrafinia et al 2014). Consequently, noise
distribution in the image space is often approximated, thus increasing the likelihood for
noise-induced bias in the estimates (Reader and Verhaeghe 2014). On the contrary, direct
4D reconstruction is applied on the raw measurements space, where the noise can be accu-
rately described, as it follows the well-known Poisson distribution. This property facilitates
robustness especially for non-linear algorithms, such as the gPatlak 4D method, thus closing
the gap between linear and non-linear performance in terms of noise-induced bias. Indeed,
our results indicated smaller differences between the two Patlak methods in the direct 4D
relative to the indirect framework.

5. Conclusions

In this study, we designed and implemented a set of linear and non-linear 4D (s/g)Patlak
reconstruction methods capable of estimating parametric images directly from single- or
multi-bed dynamic PET sinogram data. Standard as well as novel generalized Patlak models
were integrated within the 4D ML-EM reconstruction framework to support a wider range
of PET tracer kinetics with or without uptake reversibility. The direct 4D Patlak algorithms
always outperformed the respective indirect methods in terms of noise at matched resolution
levels and CNR at matched contrast. The observed noise reduction between indirect and 4D
imaging was more profound in the case of the non-linear gPatlak model. In addition, gPatlak
4D imaging outperformed the respective sPatlak analysis for both simulated and clinical data
in terms of contrast at matched noise scores and matched number of iterations. Moreover,
the presented direct reconstruction algorithms utilized the optimization transfer principle to
efficiently nest the faster Patlak iterative ML-EM update process within each global ML-EM
iteration step and thus accelerate EM convergence rate for enhanced clinical adoption of the
presented methods.

To conclude, we demonstrated the clinical feasibility and quantitative benefits of comple-
menting standard-of-care WB SUV imaging with the proposed 4D WB (s/g)Patlak reconstruc-
tion framework. The additional surrogate metrics offered by the presented family of 4D Patlak
graphical analysis methods, such as the tracer net uptake rate constant K; and net efflux rate con-
stant kg5, could extend quantification capabilities beyond the currently established SUV metric.
In addition, the proposed 4D methods is associated with relatively low noise levels, comparable
to static SUV images and supports a wide range of tracer kinetics including uptake reversibility.
Moreover, the 4D (s/g)Patlak framework was supported with advanced optimization transfer
and initialization schemes to ensure proper and faster 4D EM convergence rates and, thus, fur-
ther facilitate clinical adoption. Furthermore, all introduced 4D Patlak reconstruction algorithms
have been implemented in open-source STIR platform to enable their broader utilization by
the research community for further developments towards quantitative PET. Therefore, the pre-
sented 4D PET reconstruction methods in this study have been designed and implemented such
that they can efficiently, robustly and easily be translated to the clinic, to enhance quantifica-
tion in existing routine PET protocols for improved diagnostic and theranostic applications in
molecular imaging.
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