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Abstract—Whole-body dynamic and parametric PET imaging
has recently gained increased interest as a clinically feasible truly
quantitative imaging solution for enhanced tumor detectability
and treatment response monitoring in oncology. However, in
comparison to static scans, dynamic PET acquisitions are longer,
especially when extended to large axial field-of-view whole-body
imaging, increasing the probability of voluntary (bulk) body
motion. In this study we propose a generalized and novel motion-
compensated PET image reconstruction (MCIR) framework to
recover resolution from realistic motion-contaminated static
(3D), dynamic (4D) and parametric PET images even without the
need for gated acquisitions. The proposed algorithm has been
designed for both single-bed and whole-body static and dynamic
PET scans. It has been implemented in fully 3D space on STIR
open-source platform by utilizing the concept of optimization
transfer to efficiently compensate for motion at each tomographic
expectation-maximization (EM) update through a nested
Richardson-Lucy EM iterative deconvolution algorithm. The
performance of the method, referred as nested RL-MCIR
reconstruction, was evaluated on realistic 4D simulated
anthropomorphic digital XCAT phantom data acquired with a
clinically feasible whole-body dynamic PET protocol and
contaminated with measured non-rigid motion from MRI scans
of real human volunteers at multiple dynamic frames.
Furthermore, in order to assess the impact of our method in
whole-body PET parametric imaging, the reconstructed motion-
corrected dynamic PET images were fitted with a multi-bed
Patlak graphical analysis method to produce metabolic uptake
rate (K; parameter in Patlak model) images of highly quantitative
value. Our quantitative Contrast-to-Noise (CNR) and noise vs.
bias trade-off analysis results suggest considerable resolution
enhancement in both dynamic and parametric motion-degraded
whole-body PET images after applying nested RL-MCIR
method, without amplification of noise.
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deconvolution; Richardson-Lucy; motion; intra-frame

I. INTRODUCTION

Oncology has benefited considerably by the advent of
clinical Positron Emission Tomography (PET) imaging. Until
recently, the established surrogate of standardized uptake value
(SUV) has been employed to evaluate the metabolic activity
concentration of the administered radioactive tracer in normal
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and pathological tissues. However, SUV measurements are
dependent on time and tracer concentration in blood plasma
(input function), thus, their evaluation may not be sufficient for
quantitative tasks, such as tumor therapy response assessments
[1]. On the contrary, dynamic PET imaging, involving multiple
static acquisitions over time for a single bed position, can allow
for tracking of the activity distribution from injection time. The
four-dimensional (4D) collected data can be further analyzed,
utilizing graphical or compartmental kinetic models, to
estimate physiological parameters of interest, such as the tracer
uptake rate K;. By efficiently complementing SUV with
parametric measurements, accuracy in the diagnostic,
prognostic and treatment response assessments can be
enhanced. Until now, dynamic PET acquisitions have been
limited to the axial field-of-view (FOV) of single beds and,
thus, have not been translated to the clinic, where whole-body
imaging is necessary for evaluation of disease spread.

Recently, we proposed a clinically feasible whole-body
FDG PET parametric imaging framework capable of delivering
highly quantitative multi-bed parametric images [1]. However,
the presented protocol requires relatively long acquisitions of
~30-40min and short dynamic frames of 30-45sec. The former
attribute can considerably increase the probability for non-rigid
voluntary body (bulk) motion within each frame (intra-frame
motion) as well as across the frames (inter-frame motion),
while the latter increases noise levels. Thus, the quantitative
accuracy (bias/resolution) and precision (noise) in both
dynamic and parametric images may be degraded [2].

The majority of existing motion compensated PET image
reconstruction methods for non-brain data focus mainly on
respiratory and cardiac motion, neglecting voluntary body
motion, while they rely on gating of the PET data, assuming
sufficient statistics at each gate [3,4]. However, the
unpredictability of voluntary body motion, when combined
with the dynamic nature of acquisition and the need for short
frames, present a challenge in properly gating each dynamic
frame based on tracked motion, even when motion estimation
performance itself is considered satisfactory [5]. For instance, a
higher number of irregular non-rigid bulk motions may occur
within certain dynamic PET frames. Thus, those frames may be
time-segmented into gates of not only very low but also highly



unbalanced number of counts. Therefore, a non-gated motion
compensated reconstruction algorithm would constitute a more
feasible and practical solution to the problem of motion
correction in dynamic and parametric PET imaging,
particularly when multiple beds are involved.

Moreover, in dynamic PET imaging voluntary body
movements is often a major motion component due to longer
acquisitions. Especially for whole-body dynamic acquisitions,
where the total scan duration is longer, the probability of
extensive body motion becomes considerable. In addition,
voluntary body motion, in contrast to nearly periodic
respiratory and cardiac motion, is relatively more irregular
increasing the likelihood of inter-frame misalignments, thus,
particularly affecting parametric images. Therefore, the
challenge of compensation for voluntary body motion becomes
highly important in dynamic and parametric PET imaging.

In this study, we present a generalized maximum-
likelihood expectation-maximization (ML-EM) dynamic PET
image reconstruction framework incorporating motion
deconvolution capabilities to produce highly quantitative
accuracy and precise motion-compensated whole-body PET
images from non-gated data. The proposed nested ML-EM
reconstruction algorithm can model any type of motion
transformation and is applicable to both static and dynamic
whole-body PET data with or without gates, thanks to a
generalized motion model that relies on the accuracy in the
estimated MVFs of the motion transformations. It employs the
concept of optimization transfer to define appropriate ML-EM
surrogate objective functions at each iteration step, allowing for
the efficient decoupling of the slower EM tomographic
estimation problem in the projection space from the faster
motion EM deconvolution process in the image space. A
Richardson-Lucy EM (RL-EM) iterative deconvolution
algorithm is nested within each iteration step of the
tomographic ML-EM algorithm to compensate for the tracked
non-rigid motion at each dynamic frame, alleviating the need
for gated acquisition. Finally, the presented method has been
implemented and validated in fully 3D space on the Software
for Tomographic Image Reconstruction (STIR v3.0) open-
source platform [6], an object-oriented C++ reconstruction
library, and is scheduled for public open-source release.

II. THEORY

A. Generalized motion model in image space

Each non-rigid 3D motion transformation can be expressed
in the form of a set of three 3D motion vector fields (MVFs),
each along one of the three Cartesian coordinate directions x, y
and z. Subsequently, a warping operator can transform an
original emission (e.g. PET) or attenuation (e.g. attenuation
map derived from CT or MRI) image according to the motion
described in the MVFs. When gated acquisition is possible, the
MVF for each gated image can be estimated using advanced
registration techniques [7]; however, for irregular and
unpredictable types of motion, such as voluntary body motion,
gated acquisition becomes challenging without list mode
capabilities, even when ideal motion tracking is assumed.

The presented method can potentially model any type of
combined (e.g. respiratory + cardiac + bulk + rigid) motion,

limited only by the spatial and time resolution of the tracked
motion data. In this study, we are focusing on the motion
correction problem itself assuming that motion estimation is
reasonably accurate. The forward motion model employed here
considers each motion-contaminated image as a time-weighted
average of a set of motion-transformed/warped images:
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Notation:

e Wy, is the forward motion warping/transform
operator from voxel j, of the original image space to
voxel j; of the motion-transformed image space for a

particular s transformation,

ni ni
= |y J = I e jon-
* X, = [xlof]j0=1 and m, = [mjt]j=1 are the motion

corrected and motion-contaminated images of dynamic
frame ¢, respectively. Both images are comprised of n;
voxels in total. Note that the overall weighted averaging
operation resulted in a new motion-blurred image space,
denoted with voxel index j, for the m, images. The
image vectors can represent either reconstructed PET or
CT- or MRI-derived attenuation images. For notation
simplicity we assume that all types of images are of the
same dimensions in this study,

e s, is the subset of motion transformations occurring
during frame t and

e ¢, is the respective time-weighting factor, defined as
the time fraction relative to the duration of frame t, for
which the s € s, motion transformation holds.

The overall effect of this time-weighted averaging
operation is the introduction of motion-induced blurring in
each of the original motion-free dynamic PET images, similar
with the effect of convolving with an image-based kernel and,
thus, the presented approach has analogies with image-based
point spread function (PSF) or resolution recovery modeling.

B. Integrated modeling of motion within ML-EM dynamic
PET image reconstruction (integrated RL MCIR)

We assume, throughout this study, a PET system with n;
detector pair bins in fully 3D mode and a reconstruction of n;
dynamic images of n; voxels each. Initially, let us consider the
conventional approach of completely integrating the previous
motion model to the PET ML-EM reconstruction framework,
referenced in the rest of the text as integrated RL MCIR
algorithm. After adding the image-based motion modeling term
m;(x,) (eq. 1) into the ML-EM image estimation algorithm,
the EM forward projection process can be described as follows:
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j
Notation:
e Y=y, t]:l;:i are the expected projection data acquired

during frame t,



o X= [xt]?il are the unknown dynamic motion-
compensated images to be estimated,

o R=[r,];!" are the expectation of scattered and

random events at each dynamic frame t and

e Pt= [pitj]i,j=1
with each element pfj denoting the probability of an

annihilation event occurring in voxel j being detected in
sinogram bin i during frame t.

nin; . .
"7 is the system response matrix at frame t

Dynamic PET ML-EM reconstruction schemes aim at

maximizing the Poisson log-likelihood of the measured
. . . _ nineg .

dynamic projection measurements ¥ = [y;];;—;, given the

estimated dynamic images X, with y, = [yw]?:"1 denoting the

measured projection data for ¢ time frame:
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A term independent of x, is neglected from both equations
above, as it does not participate in the optimization w.r.t. x;.
The ML solutions, for each frame t, maximizing both log-
likelihoods (eq. 3 and 4) are the following:

X, = argmaxy, Le(ye|x:) )

In this study we are focusing only on ML solutions to
mainly demonstrate the concept of nested EM motion
deconvolution for the standard ML-EM reconstruction
framework. However the presented methods can be easily
extended to maximum-a-posteriori (MAP) reconstructions by
efficiently accounting for a prior estimate in eq. 3 and 4 using
the one-step-late (OSL) approach. When applying the ML-EM
algorithm, the following conventional EM update equation is
derived for each t frame, theoretically converging to a motion-
compensated dynamic image of maximum log-likelihood:
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The integration of motion modeling within the forward and
backward tomographic projection operations effectively adds
to the algorithm the extra task of solving for an image
deconvolution problem simultaneously with the tomographic
problem. As the spatial correlations among the voxels of the
reconstructed image updates are enhanced with the addition of
motion modeling, the EM algorithm now requires more
iteration steps to converge to an ML solution. However, the
major contribution to the computational cost per iteration
originates from the tomographic forward- and back-projection
operations, while the motion deconvolution is much faster.

Therefore, one of the drawbacks of the conventional
integrated RL-MCIR reconstruction is the slower convergence,

in terms of number of iterations required for convergence,
which is expected due to the inherent nature of the ML-EM
estimation problem. However, this would not have been a
serious concern, had the computational cost been limited, as the
primary concern in practice for convergence is the total
computational time. In fact, the major limitation of the
integrated RL-MCIR algorithm is, beside the need for larger
number of iterations, the considerably higher computational
cost per iteration, due to coupling of the faster image-based
deconvolution process together with the considerably slower
tomographic updates of the n, dynamic images.

C. Nested RL-EM motion deconvolution within ML-EM
dynamic PET image reconstruction (nested RL-MCIR)

In this section, a nested motion-compensated PET image
reconstruction algorithm is presented capable of similarly
compensating for generalized motion in non-gated frames
through motion RL-EM deconvolution. However, in this
approach the slow tomographic EM estimation problem is
efficiently decoupled from the faster image-based motion EM
deconvolution process at every iteration step. We refer to this
new ML-EM algorithm as nested RL-MCIR. The decoupling is
achieved by decomposing each originally integrated ML-EM
iteration step into a single time-consuming projection-based
tomographic EM update step and multiple nested image-based
fast EM deconvolution updates to accelerate convergence.
Nested RL-MCIR can converge faster thanks to its ability to
perform multiple nested EM deconvolution updates within
each global iteration step. Although the computational cost for
each nested update dramatically reduces, allowing for faster
motion EM deconvolution, the respective cost for each global
iteration step is slightly higher in nested RL-MCIR. However,
the considerable benefit from performing multiple nested
motion deconvolution iterations within a single tomographic
iteration allows for significantly fewer iterations to
convergence and, thus, for reduction in noise propagation and
computational time/cost.

The principles of optimization transfer [8] are employed to
construct, at each iteration step n, a surrogate objective
function for which optimization is simplified, while ensuring
convergence to the global ML solution of Eq. (5):
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The constructed image-based surrogate objective functions,
defined for each t frame, express the log-likelihood of an
estimated image frame x;, given the current update x' of that
frame. Thus, the maximization problem of the original log-
likelihood objective function L.(y:|x;) is effectively
transferred, at each iteration step n, into the maximization of
the current surrogate objective function Q. (x;|x7):

xpth = argmax,, Qc (x|x7) (8)

The objective functions in Egs. (7) and (8) and, thus, the
optimization problem for each t frame, differs at every global
iteration step, thus, producing every time a new ML solution
x}, that should in turn converge to the global ML solution X;.
The concept of optimization transfer for the nested RL MCIR



approach is illustrated in Fig. 1. The global convergence of the
ML-EM problem is guaranteed as the surrogate objective
functions Q; (x|xT) satisfy the constraints shown in Fig. 1 [8].

original objective function L;(J'JI.:)

Qelaelx?) < L(y,|x)
Qr(x?lx?) =1 (J’tlx?)

{nﬂ = argmax,, @, (x[x})
Le(ye|x2*1) = Le(yelx)

T2 .
ettt motion compensated image x,

n' surrogate obj.
function Q,(x;|x}")

(n+I)™" surrogate obj.
function Q, (x,|x}*1)

Poisson log likelihood

Fig. 1. Graphical illustration of the optimization transfer concept and the
constraints that the constructed surrogate objective functions should satisfy at
every ietration step. The maximization problem of the original objective
function (red) is transferred to the maximization of the less complex image-
based surrogate objective functions at n (blue) and n+1 (green) iteration steps.

Thus, a nested ML-EM algorithm is employed to produce
the ML solutions of eq. 5 and 8. At global iteration step n + 1,
initially, an intermediate motion-contaminated image estimate

m{™" is derived, at each t frame, using the measured
projection data y;, as reference:
m(x
m;;tm,n _ ]t( t)z 9)
lel]t y n:(x
Subsequently, a nested Richardson-Lucy EM update

equation is employed to iteratively deconvolve the image and
estimate after k = 1, ...,n; nested iterations, the next global
motion-free image x"”, utilizing the previously estimated
motion-contaminated image m;"" as a reference:
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After all n, nested iterations, the derived x,” image
update is considered the next global ML motion-corrected
image update xP'*! that will be used as initializer for the
subsequent global iteration step n + 2. Thus, using a voxel-

. . n n+l _ nng+1
based equation notation, we have: x]t it > Xjt it

The iterative RL deconvolution scheme had been
previously evaluated for motion correction with promising
results, but only for rigid brain motion and exclusively as a
post-reconstruction process, i.e. not within the ML-EM
framework, resulting in high amplification of noise with
deconvolution iterations, due to the indirect nature of motion
correction [9,10]. However, both the integrated and nested RL
MCIR algorithms enable, at each iteration step, the EM motion
deconvolution directly from projection data, where the noise
follows the well-defined Poisson distribution which can be
more accurately modeled. Thus, RL-MCIR algorithms can
potentially allow for more effective noise suppression in the
motion-compensated images, compared to post-reconstruction
RL schemes, a feature which is very important for the high
noise levels usually present in low-count or dynamic PET data,
especially for whole-body dynamic acquisitions [2].

III. METHODS

A. Generation of realistic kinetic 4D simulated image data

The performance of the proposed motion-compensated
nested ML-EM PET dynamic image reconstruction method is
evaluated on realistic 4D simulated emission and attenuation
data acquired according to our previously proposed clinically
feasible whole-body dynamic acquisition PET protocol to
reproduce as close as possible the clinical challenges associated
with this protocol in terms of noise levels, types of motion as
well as sampling of the time activity curves (TACs) [1,11].
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Fig. 2. (a) The standard fully compartmental FDG-PET tracer kinetic model
was employed in this study. It consists of the Cp(t) input function
compartment, as well as the tissue compartments for free-tracer C;(t) and
metabolized FDG C,(t) concentration over post-injection time t. (b) the k-
parameter table reviewed from literature and (c) the TACs for multiple normal
and tumor regions belonging to a cardiac bed FOV.

The standard kinetic model for fluorodeoxygucose (FDG)
tracer, i.e. a 2-compartment 4-kinetic parameter compartmental
model (Fig. 2a), and the Feng input function model were
employed for the production of the simulated noise-free TACs
for a range of normal tissues and tumors in the torso region
(Fig. 2¢) [1]. The kinetic parameter values, tabulated in Fig. 2b,
were acquired from literature review of recent clinical dynamic
PET studies [1,2]. Subsequently, the noise-free TACs were
assigned to the respective region voxels of the
anthropomorphic digital XCAT human torso phantom [12],
limited to a Biograph mCT cardiac bed axial FOV, in order to
generate realistic motion-free kinetic 4D XCAT phantom
images. In addition, a single motion-free XCAT PET
attenuation map was created.

B. Application of real human MRI-derived body motion

A series of real human body non-rigid and highly irregular
motion transformations were applied to each dynamic cardiac
PET image frame of the XCAT phantom. The initial motion-
transformed 3D XCAT images were provided from a recently
published dataset, which was created and validated by Dr. Arda



Koénik from human volunteer MRI scans mimicking
characteristic bulk and respiratory motions [13]. The exercised
natural 3D motion transformations were tracked thanks to
reflective markers, properly positioned on body surface, and
3D stereo optical imaging tracking techniques [13]. Multiple
combinations from a range of basic voluntary body motions
were applied in different combinations over the initial motion-
free dynamic frames, resulting in a total of 30 different non-
rigid transformations randomly distributed across the 6 cardiac
frames. The following five types of body motions were
randomly combined: axial slide (rigid motion), lateral torso
bend, shoulder twist, shoulder stretch and side roll [13].

Initially, the five basic human motion transformations
above were applied to XCAT to generate five motion-
transformed editions for each frame. Then a hierarchical local
affine registration method [6] was utilized to estimate, for each
of the five motion transformations of each frame, three MVFs,
each corresponding to the x, y and z Cartesian directions. The
resulting 6 X 5 X 3 = 90 MVFs were averaged across frames
to produce 5 X 3 = 15 averaged MVFs of higher precision for
each of the basic five motions. Later, the 5 sets of MVFs were
randomly combined, at each X, y and z direction, to create 25
new sets of MVFs, i.e. ng = 30 MVF sets were created in the
end. One characteristic set of MVFs is shown in Fig. 3.
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Fig. 3. A characteristic example of X, y and z 3D MVFs corresponding to one
of the 30 motion transformations applied to the simulated 4D data. Each
transformation, represented by a set of 3 3D MVFs, is a combination of the
five basic transformations estimated from the initial XCAT dataset.

Subsequently, the 30 motion transformations were
randomly grouped into 6 motion sets, each denoted as s, t =
1, ...,6. The assignments of motions to dynamic frames were
identical between emission and attenuation frames. Then, each
motion transformation s was applied, through the warping
operation sz ~jo S €S to its corresponding motion-free
frame x;, as indicated by its group s;, to produce 30 noise-free
motion-transformed 3D PET emission images d. In addition,
the same set of transformations was also applied to the single
XCAT attenuation image W, to produce 30 motion-transformed
PET attenuation images U,.

C. Simulation of 4D motion-contaminated projection PET
emission, attenuation and parametric data

Initially, each motion-transformed attenuation PET image
ps was forward projected and the respective attenuation factor
sinograms were calculated as: ag = e fWdPrOIWs)  \where
“fwdproj” denotes the Biograph mCT (Siemens Healthcare)
fully 3D analytic forward projection operation implemented in
STIR [5]. Subsequently, each motion-transformed PET
emission image dg; was forward projected, followed by
application of the respective attenuation factors ag in the
projection space to produce the corresponding motion-

transformed attenuated noise-free emission projection data
e; = ag o fwdproj(d,) with “o” denoting a Hadamard or
component-wise matrix product operation. Then, each motion-
contaminated sinogram y, = Y5, Csc€s is calculated as the
time-weighted average of the group of transformed sinograms
e, s € s, corresponding to a certain frame. For this proof of
concept study scatter and random events were not added.

A total of 20 realizations of quantitative levels of Poisson
noise were added to each simulated dynamic sinogram y,
according to the current mean "°F radioactivity of each frame,
as determined by the reported sensitivity and dead time of the
mCT scanner, the "F decay rate and the duration t; of each
frame. Later, the noise-free and noisy dynamic projections,
without and with motion, were reconstructed using the standard
ML-EM algorithm in STIR. The motion-contaminated dynamic
projections were also reconstructed with our proposed nested
RL-MCIR algorithm, as implemented in fully 3D within STIR
v3.0. The attenuation correction factors (ACFs) sinograms @,
were derived by time-weighted averaging the motion-
transformed ACF sinograms ag, s € sy, i.e. @y = Ygeg, Cstls-
We consider the derived map in order to minimize any
mismatches between emission and attenuation in each frame.

Finally, all reconstructed whole-body dynamic frames and
the measured input function b, = b(t.) at mid-frame times t;
were fitted with our proposed multi-bed version of Patlak
linear graphical analysis method [1],[2] to estimate at each
voxel the physiologic parameters of tracer uptake rate K; and

total blood volume distribution V: x;; = K; fOT *b.dt + Vb,.

IV. RESULTS

The cardiac beds from the reconstructed dynamic and
parametric whole-body PET images without and with noise are
presented in Figs. 4 and 5, respectively. Similar results were
obtained for the other beds. The impact of real voluntary
human body motion is evident in both noise-free and noisy
motion-contaminated dynamic and parametric images (2™
column). It is stronger for the parametric K; Patlak images due
to presence of considerable inter-frame motion. In addition,
contrast-to-noise ratios and noise vs. bias trade-off
performance for different ML-EM iterations are presented in
Fig. 6. The application of the nested RL-MCIR method (10
nested iterations) partially recovers, without further amplifying
noise, most of the resolution of the motion-free dynamic and
parametric images with greater enhancements for the latter.
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Fig. 4. Noise-free reconstructed (1* row) dynamic PET and (2™ row) Patlak
K; images. (1*' column) without motion, (2" column) with motion but no
correction, and (3™ column) with motion but after applying nested RL MCIR.
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Fig. 5. Same type of datasets with Fig. 4 but after adding quantitative levels
of Poisson noise on projection space for 45sec Biograph mCT PET frames
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Fig. 6. (Top-left) Contrast-to-Noise ratios (CNRs) for lung tumor and
(bottom row) noise vs. bias trade-off performance for lung and liver tumors.

V. DISCUSSION AND CONCLUSION

In this work, we are proposing a generalized motion-
compensated ML-EM PET image reconstruction algorithm
employing nested Richardson-Lucy EM motion deconvolution
to efficiently recover the motion-degraded spatial resolution of
non-gated PET images. The method is applicable to a) both
static and dynamic data, b) single-bed and whole-body
acquisitions and c¢) any expected type of motion in clinical
setting. The results have demonstrated both feasibility as well
as ability to recover motion-degraded resolution without noise
amplification in both dynamic and parametric PET images.

We have evaluated our method on simulated whole-body
PET dynamic datasets with real human voluntary body motion
and quantitative levels of noise in order to demonstrate the
potential of the algorithm under highly challenging clinical
conditions. Despite the high levels of noise, sparse time
sampling and irregularity of intra- and inter-frame non-rigid
bulk motions, the algorithm is able to successfully recover the
major resolution components of all 6 original PET frames
without further noise amplification. In addition, our method
significantly enhanced the resolution of whole-body Patlak
images, where the impact of motion was more evident, mainly
due to inter-frame bulk motion. Therefore, we expect even
better resolution recovery for less challenging acquisitions.

The proposed generalized RL-MCIR methods do not
require gated acquisitions and, thus, can also be applied to
studies where motion freezing through gating is challenging
(dynamic short frames or highly irregular motion). Moreover,

as they do not rely on multiple gates, RL-MCIR algorithms are
more computationally efficient than gated MCIR schemes. In
addition, the former can potentially complement the latter with
intra-gate motion compensation features as well.

The current study focuses mainly on motion compensation
through the novel concept of nested RL deconvolution within
ML-EM PET reconstruction, assuming motion tracking is
accurate. Furthermore, both integrated and nested RL-MCIR
methods are expected to converge to the same global ML
solution. However, particularly in the presence of high noise,
nested RL-MCIR converges at earlier iterations, before the
noise is significantly amplified, thus, resulting in potentially
higher contrast-to-noise ratios and faster computation.
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