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Abstract—Whole-body dynamic and parametric PET imaging 

has recently gained increased interest as a clinically feasible truly 

quantitative imaging solution for enhanced tumor detectability 

and treatment response monitoring in oncology. However, in 

comparison to static scans, dynamic PET acquisitions are longer, 

especially when extended to large axial field-of-view whole-body 

imaging, increasing the probability of voluntary (bulk) body 

motion. In this study we propose a generalized and novel motion-

compensated PET image reconstruction (MCIR) framework to 

recover resolution from realistic motion-contaminated static 

(3D), dynamic (4D) and parametric PET images even without the 

need for gated acquisitions. The proposed algorithm has been 

designed for both single-bed and whole-body static and dynamic 

PET scans. It has been implemented in fully 3D space on STIR 

open-source platform by utilizing the concept of optimization 

transfer to efficiently compensate for motion at each tomographic 

expectation-maximization (EM) update through a nested 

Richardson-Lucy EM iterative deconvolution algorithm. The 

performance of the method, referred as nested RL-MCIR 

reconstruction, was evaluated on realistic 4D simulated 

anthropomorphic digital XCAT phantom data acquired with a 

clinically feasible whole-body dynamic PET protocol and 

contaminated with measured non-rigid motion from MRI scans 

of real human volunteers at multiple dynamic frames. 

Furthermore, in order to assess the impact of our method in 

whole-body PET parametric imaging, the reconstructed motion-

corrected dynamic PET images were fitted with a multi-bed 

Patlak graphical analysis method to produce metabolic uptake 

rate (Ki parameter in Patlak model) images of highly quantitative 

value. Our quantitative Contrast-to-Noise (CNR) and noise vs. 

bias trade-off analysis results suggest considerable resolution 

enhancement in both dynamic and parametric motion-degraded 

whole-body PET images after applying nested RL-MCIR 

method, without amplification of noise. 
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I.  INTRODUCTION 

Oncology has benefited considerably by the advent of 
clinical Positron Emission Tomography (PET) imaging. Until 
recently, the established surrogate of standardized uptake value 
(SUV) has been employed to evaluate the metabolic activity 
concentration of the administered radioactive tracer in normal 

and pathological tissues. However, SUV measurements are 
dependent on time and tracer concentration in blood plasma 
(input function), thus, their evaluation may not be sufficient for 
quantitative tasks, such as tumor therapy response assessments 
[1]. On the contrary, dynamic PET imaging, involving multiple 
static acquisitions over time for a single bed position, can allow 
for tracking of the activity distribution from injection time. The 
four-dimensional (4D) collected data can be further analyzed, 
utilizing graphical or compartmental kinetic models, to 
estimate physiological parameters of interest, such as the tracer 
uptake rate   . By efficiently complementing SUV with 
parametric measurements, accuracy in the diagnostic, 
prognostic and treatment response assessments can be 
enhanced. Until now, dynamic PET acquisitions have been 
limited to the axial field-of-view (FOV) of single beds and, 
thus, have not been translated to the clinic, where whole-body 
imaging is necessary for evaluation of disease spread. 

Recently, we proposed a clinically feasible whole-body 
FDG PET parametric imaging framework capable of delivering 
highly quantitative multi-bed parametric images [1]. However, 
the presented protocol requires relatively long acquisitions of 
~30-40min and short dynamic frames of 30-45sec. The former 
attribute can considerably increase the probability for non-rigid 
voluntary body (bulk) motion within each frame (intra-frame 
motion) as well as across the frames (inter-frame motion), 
while the latter increases noise levels. Thus, the quantitative 
accuracy (bias/resolution) and precision (noise) in both 
dynamic and parametric images may be degraded [2].  

The majority of existing motion compensated PET image 
reconstruction methods for non-brain data focus mainly on 
respiratory and cardiac motion, neglecting voluntary body 
motion, while they rely on gating of the PET data, assuming 
sufficient statistics at each gate [3,4]. However, the 
unpredictability of voluntary body motion, when combined 
with the dynamic nature of acquisition and the need for short 
frames, present a challenge in properly gating each dynamic 
frame based on tracked motion, even when motion estimation 
performance itself is considered satisfactory [5]. For instance, a 
higher number of irregular non-rigid bulk motions may occur 
within certain dynamic PET frames. Thus, those frames may be 
time-segmented into gates of not only very low but also highly 
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unbalanced number of counts. Therefore, a non-gated motion 
compensated reconstruction algorithm would constitute a more 
feasible and practical solution to the problem of motion 
correction in dynamic and parametric PET imaging, 
particularly when multiple beds are involved.  

Moreover, in dynamic PET imaging voluntary body 
movements is often a major motion component due to longer 
acquisitions. Especially for whole-body dynamic acquisitions, 
where the total scan duration is longer, the probability of 
extensive body motion becomes considerable. In addition, 
voluntary body motion, in contrast to nearly periodic 
respiratory and cardiac motion, is relatively more irregular 
increasing the likelihood of inter-frame misalignments, thus, 
particularly affecting parametric images. Therefore, the 
challenge of compensation for voluntary body motion becomes 
highly important in dynamic and parametric PET imaging. 

In this study, we present a generalized maximum-
likelihood expectation-maximization (ML-EM) dynamic PET 
image reconstruction framework incorporating motion 
deconvolution capabilities to produce highly quantitative 
accuracy and precise motion-compensated whole-body PET 
images from non-gated data. The proposed nested ML-EM 
reconstruction algorithm can model any type of motion 
transformation and is applicable to both static and dynamic 
whole-body PET data with or without gates, thanks to a 
generalized motion model that relies on the accuracy in the 
estimated MVFs of the motion transformations. It employs the 
concept of optimization transfer to define appropriate ML-EM 
surrogate objective functions at each iteration step, allowing for 
the efficient decoupling of the slower EM tomographic 
estimation problem in the projection space from the faster 
motion EM deconvolution process in the image space. A 
Richardson-Lucy EM (RL-EM) iterative deconvolution 
algorithm is nested within each iteration step of the 
tomographic ML-EM algorithm to compensate for the tracked 
non-rigid motion at each dynamic frame, alleviating the need 
for gated acquisition. Finally, the presented method has been 
implemented and validated in fully 3D space on the Software 
for Tomographic Image Reconstruction (STIR v3.0) open-
source platform [6], an object-oriented C++ reconstruction 
library, and is scheduled for public open-source release. 

II. THEORY 

A. Generalized motion model in image space  

Each non-rigid 3D motion transformation can be expressed 
in the form of a set of three 3D motion vector fields (MVFs), 
each along one of the three Cartesian coordinate directions x, y 
and z. Subsequently, a warping operator can transform an 
original emission (e.g. PET) or attenuation (e.g. attenuation 
map derived from CT or MRI) image according to the motion 
described in the MVFs. When gated acquisition is possible, the 
MVF for each gated image can be estimated using advanced 
registration techniques [7]; however, for irregular and 
unpredictable types of motion, such as voluntary body motion, 
gated acquisition becomes challenging without list mode 
capabilities, even when ideal motion tracking is assumed. 

The presented method can potentially model any type of 
combined (e.g. respiratory + cardiac + bulk + rigid) motion, 

limited only by the spatial and time resolution of the tracked 
motion data. In this study, we are focusing on the motion 
correction problem itself assuming that motion estimation is 
reasonably accurate. The forward motion model employed here 
considers each motion-contaminated image as a time-weighted 
average of a set of motion-transformed/warped images:  

                    (  )  ∑          
 (  )                             ( )

    

 

Notation: 

       
  is the forward motion warping/transform 

operator from voxel    of the original image space to 
voxel    of the motion-transformed image space for a 
particular   transformation,  

    [    ]    
  

 and    [   ]   
  

 are the motion-

corrected and motion-contaminated images of dynamic 

frame  , respectively. Both images are comprised of    

voxels in total. Note that the overall weighted averaging 

operation resulted in a new motion-blurred image space, 

denoted with voxel index  , for the    images. The 

image vectors can represent either reconstructed PET or 

CT- or MRI-derived attenuation images. For notation 

simplicity we assume that all types of images are of the 

same dimensions in this study, 

    is the subset of motion transformations occurring 
during frame   and 

     is the respective time-weighting factor, defined as 
the time fraction relative to the duration of frame  , for 
which the      motion transformation holds. 

The overall effect of this time-weighted averaging 
operation is the introduction of motion-induced blurring in 
each of the original motion-free dynamic PET images, similar 
with the effect of convolving with an image-based kernel and, 
thus, the presented approach has analogies with image-based 
point spread function (PSF) or resolution recovery modeling. 

B. Integrated modeling of motion within ML-EM dynamic 

PET image reconstruction (integrated RL MCIR) 

We assume, throughout this study, a PET system with    
detector pair bins in fully 3D mode and a reconstruction of    
dynamic images of    voxels each. Initially, let us consider the 

conventional approach of completely integrating the previous 
motion model to the PET ML-EM reconstruction framework, 
referenced in the rest of the text as integrated RL MCIR 
algorithm. After adding the image-based motion modeling term 
   (  ) (eq. 1) into the ML-EM image estimation algorithm, 

the EM forward projection process can be described as follows:  
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Notation: 
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 are the expected projection data acquired 

during frame t, 



   ,  -   
   are the unknown dynamic motion-

compensated images to be estimated, 

   ,   -     
      are the expectation of scattered and 

random events at each dynamic frame t and 

    [   
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 is the system response matrix at frame   

with each element    
  denoting the probability of an 

annihilation event occurring in voxel   being detected in 
sinogram bin   during frame  . 

Dynamic PET ML-EM reconstruction schemes aim at 
maximizing the Poisson log-likelihood of the measured 

dynamic projection measurements   ,   -     
     , given the 

estimated dynamic images  , with    ,   -   
   denoting the 

measured projection data for   time frame: 
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A term independent of    is neglected from both equations 
above, as it does not participate in the optimization w.r.t.   . 
The ML solutions, for each frame  , maximizing both log-
likelihoods (eq. 3 and 4) are the following: 

 ̂            (  |  )                              ( ) 

In this study we are focusing only on ML solutions to 
mainly demonstrate the concept of nested EM motion 
deconvolution for the standard ML-EM reconstruction 
framework. However the presented methods can be easily 
extended to maximum-a-posteriori (MAP) reconstructions by 
efficiently accounting for a prior estimate in eq. 3 and 4 using 
the one-step-late (OSL) approach. When applying the ML-EM 
algorithm, the following conventional EM update equation is 
derived for each   frame, theoretically converging to a motion-
compensated dynamic image of maximum log-likelihood: 
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The integration of motion modeling within the forward and 
backward tomographic projection operations effectively adds 
to the algorithm the extra task of solving for an image 
deconvolution problem simultaneously with the tomographic 
problem. As the spatial correlations among the voxels of the 
reconstructed image updates are enhanced with the addition of 
motion modeling, the EM algorithm now requires more 
iteration steps to converge to an ML solution. However, the 
major contribution to the computational cost per iteration 
originates from the tomographic forward- and back-projection 
operations, while the motion deconvolution is much faster.  

Therefore, one of the drawbacks of the conventional 
integrated RL-MCIR reconstruction is the slower convergence, 

in terms of number of iterations required for convergence, 
which is expected due to the inherent nature of the ML-EM 
estimation problem. However, this would not have been a 
serious concern, had the computational cost been limited, as the 
primary concern in practice for convergence is the total 
computational time. In fact, the major limitation of the 
integrated RL-MCIR algorithm is, beside the need for larger 
number of iterations, the considerably higher computational 
cost per iteration, due to coupling of the faster image-based 
deconvolution process together with the considerably slower 
tomographic updates of the    dynamic images. 

C. Nested RL-EM motion deconvolution within ML-EM 

dynamic PET image reconstruction (nested RL-MCIR) 

In this section, a nested motion-compensated PET image 
reconstruction algorithm is presented capable of similarly 
compensating for generalized motion in non-gated frames 
through motion RL-EM deconvolution. However, in this 
approach the slow tomographic EM estimation problem is 
efficiently decoupled from the faster image-based motion EM 
deconvolution process at every iteration step. We refer to this 
new ML-EM algorithm as nested RL-MCIR. The decoupling is 
achieved by decomposing each originally integrated ML-EM 
iteration step into a single time-consuming projection-based 
tomographic EM update step and multiple nested image-based 
fast EM deconvolution updates to accelerate convergence. 
Nested RL-MCIR can converge faster thanks to its ability to 
perform multiple nested EM deconvolution updates within 
each global iteration step. Although the computational cost for 
each nested update dramatically reduces, allowing for faster 
motion EM deconvolution, the respective cost for each global 
iteration step is slightly higher in nested RL-MCIR. However, 
the considerable benefit from performing multiple nested 
motion deconvolution iterations within a single tomographic 
iteration allows for significantly fewer iterations to 
convergence and, thus, for reduction in noise propagation and 
computational time/cost. 

The principles of optimization transfer [8] are employed to 
construct, at each iteration step  , a surrogate objective 
function for which optimization is simplified, while ensuring 
convergence to the global ML solution of Eq. (5): 
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The constructed image-based surrogate objective functions, 
defined for each   frame, express the log-likelihood of an 
estimated image frame   , given the current update   

  of that 
frame. Thus, the maximization problem of the original log-
likelihood objective function   (  |  ) is effectively 
transferred, at each iteration step  , into the maximization of 
the current surrogate objective function   (  |  

 ): 

  
              (  |  

 )                       ( ) 

The objective functions in Eqs. (7) and (8) and, thus, the 
optimization problem for each   frame, differs at every global 
iteration step, thus, producing every time a new ML solution 
  
 , that should in turn converge to the global ML solution  ̂ . 

The concept of optimization transfer for the nested RL MCIR 



approach is illustrated in Fig. 1. The global convergence of the 
ML-EM problem is guaranteed as the surrogate objective 
functions   (  |  

 ) satisfy the constraints shown in Fig. 1 [8].  

 

Fig. 1. Graphical illustration of the optimization transfer concept and the 

constraints that the constructed surrogate objective functions should satisfy at 
every ietration step. The maximization problem of the original objective 

function (red) is transferred to the maximization of the less complex image-

based surrogate objective functions at n (blue) and n+1 (green) iteration steps. 

Thus, a nested ML-EM algorithm is employed to produce 
the ML solutions of eq. 5 and 8. At global iteration step    , 
initially, an intermediate motion-contaminated image estimate 

  
    

 is derived, at each   frame, using the measured 
projection data     as reference: 
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Subsequently, a nested Richardson-Lucy EM update 
equation is employed to iteratively deconvolve the image and 
estimate after          nested iterations, the next global 

motion-free image   
   , utilizing the previously estimated 

motion-contaminated image   
    

 as a reference: 
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After all    nested iterations, the derived   
       image 

update is considered the next global ML motion-corrected 
image update   

    that will be used as initializer for the 
subsequent global iteration step    . Thus, using a voxel-

based equation notation, we have:    
       

  ,    
       

      . 

The iterative RL deconvolution scheme had been 
previously evaluated for motion correction with promising 
results, but only for rigid brain motion and exclusively as a 
post-reconstruction process, i.e. not within the ML-EM 
framework, resulting in high amplification of noise with 
deconvolution iterations, due to the indirect nature of motion 
correction [9,10]. However, both the integrated and nested RL 
MCIR algorithms enable, at each iteration step, the EM motion 
deconvolution directly from projection data, where the noise 
follows the well-defined Poisson distribution which can be 
more accurately modeled. Thus, RL-MCIR algorithms can 
potentially allow for more effective noise suppression in the 
motion-compensated images, compared to post-reconstruction 
RL schemes, a feature which is very important for the high 
noise levels usually present in low-count or dynamic PET data, 
especially for whole-body dynamic acquisitions [2]. 

III. METHODS 

A. Generation of realistic kinetic 4D simulated image data 

The performance of the proposed motion-compensated 
nested ML-EM PET dynamic image reconstruction method is 
evaluated on realistic 4D simulated emission and attenuation 
data acquired according to our previously proposed clinically 
feasible whole-body dynamic acquisition PET protocol to 
reproduce as close as possible the clinical challenges associated 
with this protocol in terms of noise levels, types of motion as 
well as sampling of the time activity curves (TACs) [1,11].  

 

Fig. 2. (a) The standard fully compartmental FDG-PET tracer kinetic model 

was employed in this study. It consists of the   ( ) input function 

compartment, as well as the tissue compartments for free-tracer   ( ) and 

metabolized FDG   ( ) concentration over post-injection time  . (b) the k-
parameter table reviewed from literature and (c) the TACs for multiple normal 
and tumor regions belonging to a cardiac bed FOV. 

The standard kinetic model for fluorodeoxygucose (FDG) 
tracer, i.e. a 2-compartment 4-kinetic parameter compartmental 
model (Fig. 2a), and the Feng input function model were 
employed for the production of the simulated noise-free TACs 
for a range of normal tissues and tumors in the torso region 
(Fig. 2c) [1]. The kinetic parameter values, tabulated in Fig. 2b, 
were acquired from literature review of recent clinical dynamic 
PET studies [1,2]. Subsequently, the noise-free TACs were 
assigned to the respective region voxels of the 
anthropomorphic digital XCAT human torso phantom [12], 
limited to a Biograph mCT cardiac bed axial FOV, in order to 
generate realistic motion-free kinetic 4D XCAT phantom 
images. In addition, a single motion-free XCAT PET 
attenuation map was created. 

B. Application of real human MRI-derived body motion 

A series of real human body non-rigid and highly irregular 
motion transformations were applied to each dynamic cardiac 
PET image frame of the XCAT phantom. The initial motion-
transformed 3D XCAT images were provided from a recently 
published dataset, which was created and validated by Dr. Arda 



Könik from human volunteer MRI scans mimicking 
characteristic bulk and respiratory motions [13]. The exercised 
natural 3D motion transformations were tracked thanks to 
reflective markers, properly positioned on body surface, and 
3D stereo optical imaging tracking techniques [13]. Multiple 
combinations from a range of basic voluntary body motions 
were applied in different combinations over the initial motion-
free dynamic frames, resulting in a total of 30 different non-
rigid transformations randomly distributed across the 6 cardiac 
frames. The following five types of body motions were 
randomly combined: axial slide (rigid motion), lateral torso 
bend, shoulder twist, shoulder stretch and side roll [13].  

Initially, the five basic human motion transformations 
above were applied to XCAT to generate five motion-
transformed editions for each frame. Then a hierarchical local 
affine registration method [6] was utilized to estimate, for each 
of the five motion transformations of each frame, three MVFs, 
each corresponding to the x, y and z Cartesian directions. The 
resulting          MVFs were averaged across frames 
to produce        averaged MVFs of higher precision for 
each of the basic five motions. Later, the 5 sets of MVFs were 
randomly combined, at each x, y and z direction, to create 25 
new sets of MVFs, i.e.       MVF sets were created in the 
end. One characteristic set of MVFs is shown in Fig. 3. 

 

Fig. 3. A characteristic example of x, y and z 3D MVFs corresponding to one 

of the 30 motion transformations applied to the simulated 4D data. Each 
transformation, represented by a set of 3 3D MVFs, is a combination of the 

five basic transformations estimated from the initial XCAT dataset. 

Subsequently, the 30 motion transformations were 
randomly grouped into 6 motion sets, each denoted as      
     . The assignments of motions to dynamic frames were 
identical between emission and attenuation frames. Then, each 
motion transformation   was applied, through the warping 
operation       

      , to its corresponding motion-free 

frame   , as indicated by its group   , to produce 30 noise-free 
motion-transformed 3D PET emission images   . In addition, 
the same set of transformations was also applied to the single 
XCAT attenuation image    to produce 30 motion-transformed 
PET attenuation images   . 

C. Simulation of 4D motion-contaminated projection PET 

emission, attenuation and parametric data 

Initially, each motion-transformed attenuation PET image 
   was forward projected and the respective attenuation factor 

sinograms were calculated as:     
        (  ), where 

“       ” denotes the Biograph mCT (Siemens Healthcare) 
fully 3D analytic forward projection operation implemented in 
STIR [5]. Subsequently, each motion-transformed PET 
emission image    was forward projected, followed by 
application of the respective attenuation factors    in the 
projection space to produce the corresponding motion-

transformed attenuated noise-free emission projection data 
             (  ) with “ ” denoting a Hadamard or 
component-wise matrix product operation. Then, each motion-
contaminated sinogram    ∑           is calculated as the 

time-weighted average of the group of transformed sinograms 
  ,     , corresponding to a certain frame. For this proof of 
concept study scatter and random events were not added. 

A total of 20 realizations of quantitative levels of Poisson 
noise were added to each simulated dynamic sinogram    
according to the current mean 

18
F radioactivity of each frame, 

as determined by the reported sensitivity and dead time of the 
mCT scanner, the 

18
F decay rate and the duration    of each 

frame. Later, the noise-free and noisy dynamic projections, 
without and with motion, were reconstructed using the standard 
ML-EM algorithm in STIR. The motion-contaminated dynamic 
projections were also reconstructed with our proposed nested 
RL-MCIR algorithm, as implemented in fully 3D within STIR 
v3.0. The attenuation correction factors (ACFs) sinograms  ̅  
were derived by time-weighted averaging the motion-
transformed ACF sinograms   ,     , i.e.  ̅   ∑          . 

We consider the derived map in order to minimize any 
mismatches between emission and attenuation in each frame. 

Finally, all reconstructed whole-body dynamic frames and 
the measured input function     (  ) at mid-frame times    
were fitted with our proposed multi-bed version of Patlak 
linear graphical analysis method [1],[2] to estimate at each 
voxel the physiologic parameters of tracer uptake rate    and 

total blood volume distribution  :       ∫     
  
 

    .  

IV. RESULTS 

The cardiac beds from the reconstructed dynamic and 
parametric whole-body PET images without and with noise are 
presented in Figs. 4 and 5, respectively. Similar results were 
obtained for the other beds. The impact of real voluntary 
human body motion is evident in both noise-free and noisy 
motion-contaminated dynamic and parametric images (2

nd
 

column). It is stronger for the parametric    Patlak images due 
to presence of considerable inter-frame motion. In addition, 
contrast-to-noise ratios and noise vs. bias trade-off 
performance for different ML-EM iterations are presented in 
Fig. 6. The application of the nested RL-MCIR method (10 
nested iterations) partially recovers, without further amplifying 
noise, most of the resolution of the motion-free dynamic and 
parametric images with greater enhancements for the latter. 

 

Fig. 4. Noise-free reconstructed (1st row) dynamic PET and (2nd row) Patlak 

   images. (1st column) without motion, (2nd column) with motion but no 
correction, and (3rd column) with motion but after applying nested RL MCIR. 



 

Fig. 5. Same type of datasets with Fig. 4 but after adding quantitative levels 
of Poisson noise on projection space for 45sec Biograph mCT PET frames 

 

Fig. 6. (Top-left) Contrast-to-Noise ratios (CNRs) for lung tumor and 

(bottom row) noise vs. bias trade-off performance for lung and liver tumors. 

V. DISCUSSION AND CONCLUSION 

In this work, we are proposing a generalized motion-
compensated ML-EM PET image reconstruction algorithm 
employing nested Richardson-Lucy EM motion deconvolution 
to efficiently recover the motion-degraded spatial resolution of 
non-gated PET images. The method is applicable to a) both 
static and dynamic data, b) single-bed and whole-body 
acquisitions and c) any expected type of motion in clinical 
setting. The results have demonstrated both feasibility as well 
as ability to recover motion-degraded resolution without noise 
amplification in both dynamic and parametric PET images. 

We have evaluated our method on simulated whole-body 
PET dynamic datasets with real human voluntary body motion 
and quantitative levels of noise in order to demonstrate the 
potential of the algorithm under highly challenging clinical 
conditions. Despite the high levels of noise, sparse time 
sampling and irregularity of intra- and inter-frame non-rigid 
bulk motions, the algorithm is able to successfully recover the 
major resolution components of all 6 original PET frames 
without further noise amplification. In addition, our method 
significantly enhanced the resolution of whole-body Patlak 
images, where the impact of motion was more evident, mainly 
due to inter-frame bulk motion. Therefore, we expect even 
better resolution recovery for less challenging acquisitions.  

The proposed generalized RL-MCIR methods do not 
require gated acquisitions and, thus, can also be applied to 
studies where motion freezing through gating is challenging 
(dynamic short frames or highly irregular motion). Moreover, 

as they do not rely on multiple gates, RL-MCIR algorithms are 
more computationally efficient than gated MCIR schemes. In 
addition, the former can potentially complement the latter with 
intra-gate motion compensation features as well. 

The current study focuses mainly on motion compensation 
through the novel concept of nested RL deconvolution within 
ML-EM PET reconstruction, assuming motion tracking is 
accurate. Furthermore, both integrated and nested RL-MCIR 
methods are expected to converge to the same global ML 
solution. However, particularly in the presence of high noise, 
nested RL-MCIR converges at earlier iterations, before the 
noise is significantly amplified, thus, resulting in potentially 
higher contrast-to-noise ratios and faster computation. 
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