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ABSTRACT  

Graphical analysis is employed in the research setting to provide quantitative estimation of PET tracer kinetics from 
dynamic images at a single bed. Recently, we proposed a multi-bed dynamic acquisition framework enabling clinically 
feasible whole-body parametric PET imaging by employing post-reconstruction parameter estimation. In addition, by 
incorporating linear Patlak modeling within the system matrix, we enabled direct 4D reconstruction in order to 
effectively circumvent noise amplification in dynamic whole-body imaging. However, direct 4D Patlak reconstruction 
exhibits a relatively slow convergence due to the presence of non-sparse spatial correlations in temporal kinetic analysis. 
In addition, the standard Patlak model does not account for reversible uptake, thus underestimating the influx rate Ki. We 
have developed a novel whole-body PET parametric reconstruction framework in the STIR platform, a widely employed 
open-source reconstruction toolkit, a) enabling accelerated convergence of direct 4D multi-bed reconstruction, by 
employing a nested algorithm to decouple the temporal parameter estimation from the spatial image update process, and 
b) enhancing the quantitative performance particularly in regions with reversible uptake, by pursuing a non-linear 
generalized Patlak 4D nested reconstruction algorithm.  
A set of published kinetic parameters and the XCAT phantom were employed for the simulation of dynamic multi-bed 
acquisitions. Quantitative analysis on the Ki images demonstrated considerable acceleration in the convergence of the 
nested 4D whole-body Patlak algorithm. In addition, our simulated and patient whole-body data in the post-
reconstruction domain indicated the quantitative benefits of our extended generalized Patlak 4D nested reconstruction for 
tumor diagnosis and treatment response monitoring.  
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1. INTRODUCTION  
Dynamic PET enables quantitative parametric imaging (e.g. FDG uptake rate constant Ki), and has witnessed continued 
interest in the context of single-bed acquisition. On the other hand, single-frame SUV PET imaging is routinely invoked 
in the context of multi-bed acquisition1. Previously, we have proposed2,3 a scanning framework enabling clinically 
feasible whole-body parametric PET imaging, thus combining the benefits of multi-bed acquisition and estimation of 
quantitative tracer kinetic parameters from dynamic scans. This protocol is comprised of a short dynamic scan over the 
cardiac bed position right after administration of tracer (first phase) to measure the early section of the tracer 
concentration in the blood, followed by a dynamic series of whole-body scans to capture the later part of the time activity 
curves at every voxel over multiple beds (second phase, figure 1). The methods presented here have been designed for 
the whole-body protocols, however they can also be applied to conventional single-bed dynamic studies.   

The standard Patlak linear graphical analysis4 was selected as a robust approach to model the PET tracer kinetics on a 
voxel-basis to produce whole-body parametric images. Typically, the dynamic PET images are first reconstructed 
individually from the dynamically acquired PET projection data, followed by a post-reconstruction Patlak analysis to 
produce the parametric images. This procedure, commonly referred to as indirect or post-reconstruction parametric 
imaging, requires the modeling of the noise distribution in the dynamic images, which can be a challenging task as the 
image noise is spatially variant, thus resulting in noise enhancement in the parametric image space. 
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and tumors exhibiting FDG uptake in PET human studies4. However a considerable number of studies report kinetic 
parameter data suggesting a certain degree of reversibility11-13. The linear Patlak model assumes no reversible uptake and 
can be seen14-16 to underestimate Ki to account for lack of appropriate modeling of reversibility, thus compromising 
quantitative accuracy. We propose a novel generalized PET imaging reconstruction framework to allow for truly 
quantitative whole body parametric imaging including in regions exhibiting reversibility. For this purpose, an extended 
non-linear Patlak graphical analysis4 is presented, equipped with an additional net efflux rate constant kloss to properly 
account for reversibility. In addition, we incorporate this non-linear generalized Patlak model within a 4D reconstruction 
nested framework to a) limit the enhanced noise levels involved in non-linear kinetic modeling and b) benefit from the 
fast convergence properties of nested MLEM algorithms. 

2. METHODOLOGY 
2.1 Linear Patlak graphical analysis 

The linear Patlak model utilizes dynamic PET image data and the time course of blood plasma tracer concentration 
(input function) to estimate the kinetic macro-parameters Ki and V at each voxel4: 

*0
i i i

0

( )
( ) ( ) ( ) ( ) ( ) ( ) ,   > 
( ) ( )

t

P t

P P P P
P P

C d
C t K V C t K C d VC t K C t VC t t t
C t C t
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τ τ= + ⇒ = + = ⊗ +

∫
∫                         (1) 

where ⊗  denotes the temporal convolution operation, C(t) is the measured time activity curve (TAC) at each voxel, 
CP(t) is the input function estimated either from an image region-of-interest (ROI) or from blood sampling and t* is the 
time after which relative kinetic equilibrium between the blood and the reversible compartment is attained. Eq. 1 is based 
on the following definition4 for Ki: ( ) ( )i 0 0 pK C C dτ τ

∞
= ∞ ∫ , where C0(∞) denotes the tracer concentration left in the 

system at infinite time if uptake is irreversible. 

 

2.2 Nested direct 4D MLEM Patlak reconstruction 

Letting =Y PM   , where 1 TNy y⎡ ⎤= ⎣ ⎦Y L  are the N dynamic projection data,  [ ], T=Μ K V are the parametric images 

of slope and intercept and P  is the spatio-temporal system matrix: 
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where ⊕  denotes the Kronecker product and ( ) ( )P p nC n C t= , ( ) ( )0
= dnt

P pS n C τ τ∫  are the plasma activity and its integral 

from injection to frame time nt . According to Patlak eq. (1), for the jth voxel of nth image: 
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j j P j P P Px K S n V C n y K V Px P S n C n= + = = +K V                                      (3) 

where K and V denote the Ki and V parametric images respectively. Then the two 4D MLEM update eq. follows: 
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Then, a nested generalized Patlak algorithm utilizing the relationship above can be described. The new algorithm will 
have the same outer loop update equation as before. The nested update eq. and the log-likelihood follows: 
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The V parametric image is included as a distinct element in ĥ  and thus is updated in eq. (8). The analytical solution18,19 
for K and kloss images optimizing the log-likelihood for each jth  voxel above is provided as follows: 
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While ordinary least squares (OLS) regression can be employed for the standard linear Patak parameters estimation,  for 
the non-linear generalized Patlak model we propose a Basis Function Method (BFM)20. 

Initially a global range of q (e.g. 1000) discrete candidate kloss values (e.g. [10-4,10-1]) is determined from eq. 10 using a 
collection of k-values reported in literature11-13. Then q basis functions, each representing a candidate kloss value, are 
constructed to linearize the problem (eq. 11):  

( ) ( ) ( )*
i( ) ( ),   >   ,   , 1lossk t

p PC t K B t VC t t t B t C e qω
ω ω ω−= + = ⊗ = K                                 (10)                      

Subsequently, for each of the q basis functions associated with a particular kloss(ω) value, OLS regression is applied to 
Eq. 8 to estimate Ki(ω) and V(ω) parameters and calculate the corresponding residual sum of squares RSS(ω). The set of 
estimated parameters (Ki(ω), kloss(ω),V(ω)) yielding the minimum RSS(ω) is finally selected. 

 

3. DATA AND TOOLS 
In the current study we generated both simulated and human clinical PET dynamic data. For the quantitative evaluation 
of the direct 4D parametric image reconstruction methods we employed realistic simulated data, while the clinical patient 
data were used to demonstrate the potential of the generalized Patlak kinetic model on the kinetic analysis of dynamic 
whole body clinical images and the indirect estimation of the respective parametric images. 
Initially, a set of realistic time activity curves (TACs) were constructed for various characteristic regions/organs of the 
human body by employing a set of kinetic micro-parameters as obtained from an extensive literature review (Table 1) 
and assuming the complete 2-compartment kinetic model of figure 2c. Then, a dynamic series of noise-free phantom 
images were carefully generated by assigning the previous TACs to the respective defined regions of the advanced 
voxelized XCAT human torso phantom at the corresponding time frames of our proposed protocol (figure 1). Later, 
analytic simulations were conducted with the appropriate levels of Poisson noise corresponding to the short time frame 
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lengths of the multi-bed dynamic protocol and the degree of attenuation in the human torso regions as modeled by the 
XCAT phantom.  Finally, the resulting noisy dynamic PET projection data were reconstructed in either 3D or 4D mode 
using our extended STIR software libraries to produce reconstructed PET and Patlak parametric images respectively. 
While, in the case of direct 4D reconstruction, the parametric images were estimated directly from the sinograms, for the 
3D reconstructions, the resulting dynamic PET images were further analyzed kinetically, assuming the two presented 
Patlak models, to indirectly estimate the Patlak parametric images as well. 

 
 
Table 1. Published FDG kinetic parameter values employed to generate realistic XCAT dynamic images for simulated 
dynamic multi-bed acquisitions 

 
Regions K1 k2 k3 k4 VB

Normal Liver 0.864 0.981 0.005 0.016 - 
Liver Tumor 0.243 0.78 0.1 0 - 
Normal Lung 0.108 0.735 0.016 0.013 0.017 
Lung Tumor 0.044 0.231 1.149 0.259 - 
Myocardium 0.6 1.2 0.1 0.001 - 

 

4. RESULTS AND DISCUSSION 

In Figure 3 the Ki parametric images are presented before and after application of spatial smoothing (Gaussian FWHM of 
2mm) as produced by the conventional as well as the nested version of direct 4D linear Patlak reconstructions. For each 
case, a set of images are illustrated for various number of iterations. The set of parametric images corresponding to the 
nested 4D Patlak reconstruction achieves convergence faster, i.e. in less computation time,  and also at earlier iterations 
where the noise levels are low to moderate. Thus the nested whole-body Patlak provides a more clinically feasible 
solution for enhanced tumor diagnosis in faster times and with higher contrast-to-noise (CNR) levels.  

Moreover in figure (4a) we visually demonstrate in the post-reconstruction domain the advantage of generalized Patlak 
parametric imaging both for simulated noise-free and noisy activity distributions as well as for two clinical patient 
studies. Furthermore, the quantitative analysis (fig. 4b) in the simulated liver tumor confirms the superior convergence 
and overall better tumor CNR performance with nested 4D Patlak methods. Finally, figure (4c) presents the Patlak plots 
for noise-free and noisy ROIs. It becomes evident that the extended Patlak model can provide better quantitative Ki 
estimates than standard Patlak provided the noise is sufficiently modeled.   

The results of the previous paragraph  (figure 4) clearly suggest the potential of the application of generalized Patlak 
model in whole-body parametric imaging both for simulated and clinical data. However, these results are only based on 
the indirect estimation of the parametric images from the 3D reconstructed dynamic PET images. Therefore, our next 
step was to quantitatively also evaluate our proposed non-linear generalized Patlak 4D reconstruction methods (nested 
and non-nested) in order to compare their performance against the linear standard Patlak 4D algorithms. In Figure 5, the 
lung SNR is plotted against the number of ML-EM iterations (i.e. a single subset was used) for the non-nested 
(POSMAPOSL) and nested (NESTPOSMAPOSL) linear Patlak 4D methods as well as for the non-linear generalized 
Patlak non-nested (GPOSMAPOSL) and nested (NESTGPOSMAPOSL) 4D reconstruction algorithms.  
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Figure 5. The SNR for the lung region of parametric Ki images against the number of iterations for a range of direct 4D Patlak 
reconstruction algorithms: 

a) POSMAPOSL: linear standard Patlak direct 4D reconstruction, non-nested algorithm, equivalent to 1 nested loop at 
each iteration 

b) NESTPOSMAPOSL: linear direct 4D reconstruction, optimization transfer/nested algorithm, 20 nested loops at each 
iteration 

c) GPOSMAPOSL: non-linear generalized Patlak reconstruction, non-nested, equivalent to one nested loop at each 
iteration 

d) NESTGPOSMAPOSL: non-linear generalized Patlak reconstruction, optimization transfer/nested algorithm, 7 nested 
loops at each iteration  

e) true kloss: algorithm initialized with true kloss image 
f) kloss=0: algorithm initialized with kloss=0 image 

In all cases, the algorithms have been initialized with unity images for Ki and V parameters. 
 

Furthermore, we evaluated the effect of the different initializations of the kloss image for the generalized Patlak 
algorithms. The plots evidently suggest similarly superior SNR performance for both the GPOSMAPOSL and 
NESTGPOSMAPOSL methods with the latter consistently achieving the highest SNR in all iterations. The 
advantage of the generalized Patlak 4D reconstructions is evident for a wide range of moderate number of ML-EM 
iterations (21-100 iterations, 1 subset) and becomes smaller as the iterations further increase due to the ML-EM 
induced effect of amplification of noise at higher iteration numbers in the parametric images of all algorithms.  

Moreover, the initialization of both generalized Patlak 4D algorithms with a standard zero kloss image does not 
appear to affect their performance suggesting good convergence properties when kloss=0 is used as initial estimate 
regardless of the true kloss distribution. That was not the case when kloss=1 which is a value likely to be very distant 
from the true especially when the units of k-values are proportional to sec-1. Therefore, we recommend the following 
initialization as a standard for this type of algorithms: Ki=1, kloss=0 and V=1.  

The presented results are in agreement with what would be expected from the theory of section 2. Indeed, the 
incorporation of the generalized, as opposed to the standard, Patlak model within the 4D reconstruction (paragraph 
2.4) is likely to further enhance the image quality of the parametric images in terms of SNR by a) potentially 
reducing the bias induced by the incomplete modeling of the standard Patlak and, at the same time, b) by 
suppressing the noise levels thanks to the better noise handling properties of the direct 4D reconstruction 
frameworks as elaborated in paragraph 1.1. 

On the other hand, the computation time of the reconstruction increases considerably (~2-3 times depending on the 
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accuracy, i.e. number of time samples, in the convolution operations at each iteration, eq. 7) for the non-linear Patlak 
model. Moreover, the nested part of each iteration is no longer computationally faster than the rest of the processes 
of the iteration. Therefore, less number of nested loops must be applied for generalized Patlak schemes (7 compared 
to 20 used for standard Patlak), resulting in minor improvements in the convergence rate of the algorithm. Therefore, 
we recommend performing only a few (<7) nested updates per iteration for the generalized Patlak algorithms. At this 
point we should remind that the application of a single nested loop is equivalent to applying the respective non-
nested version of the algorithms, as expected from theory and as we have confirmed after implementation. 

 

5. CONCLUSIONS 

In this study we designed and implemented in the STIR open source tomographic image reconstruction software a 
set of direct 4D Patlak reconstruction algorithms for both single-bed and whole-body dynamic PET studies. We 
conducted realistic dynamic simulations to validate our methods and quantitatively compared their performance in 
terms of CNR or SNR metrics. 

First of all, our results demonstrate the importance of the introduction of the more complete generalized Patlak 
kinetic model as an alternative to the linear standard Patlak model through the quantitative evaluation of indirect 
parametric imaging performed both on simulated and clinical data. The new model significantly reduces bias but is 
not very robust to noise in the case of indirect parameter estimation due to its non-linear nature. 

Furthermore, we present the potential benefits of incorporating the generalized Patlak model into a whole body 
direct 4D parametric image reconstruction framework to further enhance the image quality of the parametric images 
in terms of SNR by efficiently suppressing the noise. Indeed, our results suggest significant enhancement in the 
measured SNR of the parametric images, but the computational cost also increases considerably. In addition, a 
standardized initialization scheme is proposed to help avoid lack of or slowness in convergence. 

Finally, the effect of the application of the optimization transfer principle in the standard and generalized Patlak ML-
EM 4D reconstruction algorithms is evaluated.  The resulting nested versions of the 4D algorithms converge faster 
than the non-nested algorithms and thus can be considered more clinically feasible, attractive and practical. 
However, the observed convergence acceleration is significant mainly for the linear standard Patlak 4D algorithm, 
while it is found to be considerably smaller for the non-linear algorithm. 
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